Concurrent Programming
with Harmony

Robbert van Renesse

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Concurrency Lectures Outline

* What are the problems?
o ho determinism, no atomicity

e What is the solution?
o some form of mutual exclusion

* How to specify concurrent problems?
o atomic operations

e How to construct correct concurrent code?
o behaviors

* How to test concurrent programs?
o comparing behaviors

Concurrency Lectures Outline

* How to build Concurrent Data Structures?
o using locks

* How to wait for some condition?
o using condition variables

* How to deal with deadlock?
o prevention, avoidance, detection

* How to use barrier synchronization?
o improve scalability

* How to make code interrupt-safe?
o enabling/disabling interrupts

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Concurrent Programming is Hard

Why?
o Concurrent programs are non-deterministic
— run them twice with same input, get two different answers

— or worse, one time it works and the second time it fails
o Program statements are executed non-atomically

- X +=1 compiles to something like
* LOAD x
* ADD1
* STORE x

— with concurrency, this leads to non-deterministic
interleavings

Harmony

* A new concurrent programming language
o heavily based on Python syntax to reduce
learning curve for many

* A new underlying virtual machine

o it tries all possible executions of a program

until it finds a problem, if any
(this is called “model checking”)

The problem with non-determinism

sequential concurrent
1 | shared = True 1 | shared = True
2 2
3 | def f(): assert shared 3 | def f(): assert shared
4 | def g(): shared = False 4 | def g(): shared = False
5 S5
6 | fO 6 | spawn f()
7190 7 | spawn g()

What will happen if you run each?

The problem with non-determinism

sequential concurrent

1 | shared = True 1 | shared = True
2 2
3 | def f(): assert shared 3 | def f(): assert shared
4 | def g(): shared = False 4 | def g(): shared = False
S5 S5
6 | fO 6 | spawn f()
7190 7 | spawn g()
#states: 2 *Schedule thread TO: init()
No issues * Line 1: Initialize shared to True

* Thread terminated
*Schedule thread T2: g()
* Line 4: Set shared to False (was True)
* Thread terminated
*Schedule thread T1: f()
e Line 3: Harmony assertion failed

The problem with non-atomicity

sequential concurrent

1 | shared = 0 1 | shared = 0

” 2

3 | def f(): shared += 1 3 | def f(): shared += 1
4 4

St (@) 5 | spawn ()

6 | fO 6 | spawn f()

T/ T4

8 | finally shared == 2 8 | finally shared == 2

What will happen if you run each?

The problem with non-atomicity

co N OYUTL A~ WDN B

sequential

shared = 0

def f(): shared += 1

fO
fO

finally shared ==

#states: 2
No 1ssues

concurrent

1 | shared = 0

2

3 | def f(): shared += 1
4

5 | spawn ()

6 | spawn f()

74

8

finally shared ==

Schedule thread T1: f()

Preempted in f()

about to store 1 into shared in line 3

Schedule thread T2: f()

Line 3: Set shared to 1 (was 0)
Schedule thread T1: f()

Line 3: Set shared to 1 (unchanged)
Schedule thread T3: finally()

Line 8: Harmony assertion failed

Race Conditions

= timing dependent error involving shared state

« Ascheduleis aninterleaving of (i.e., total order
on) the machine instructions executed by each
thread

 Usually, many interleavings are possible

 Arace condition occurs when at least one
interleaving gives an undesirable result

Race Conditions are Hard to Debug

* Number of possible interleavings is usually huge
* Bad interleavings, if they exist, may happen only rarely

— Works 1000x # no race condition

* Timing dependent: small changes hide bugs
o add print statement = bug no longer seems to happen

* Harmony is designed to help identify such bugs
o model checking!

)

rate Space and
Model Checking

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Harmony Machine Code

def f():
shared += 1

—compiler 4

LA wbh ke

Frame f() Start a new stack frame
Load shared Push shared onto stack
Push 1 Push 1 onto stack

2-ary + Add top two stack elements

Store shared Store top of stack into shared

Harmony Virtual Machine State

Three parts:
1. code (never changes)
2. values of the shared variables
3. state of each of the running threads
* PC and stack (aka context)

HVM state represents one vertex in a graph of states

State space

-—p thread 1 loads

—p thread 2 loads

initial state

-===p thread 1 stores

-===p thread 2 stores

Load shared
Push 1

2-ary +
Store shared

State space

-—p thread 1 loads

—p thread 2 loads

-===p thread 1 stores

-===p thread 2 stores

A possible execution

Load shared
Push 1

2-ary +
Store shared

State Space Load shared

Push 1
—> thread I loads ===-» thread 1 stores 2-ary +
— thread 2 loads ----» thread 2 stores Store shared

Another possible execution

Load shared
State space Load
—> thread I loads ===-» thread 1 stores 2-ary +
— thread 2 loads ----» thread 2 stores Store shared

All possible states after one “step”

State Space Load shared

Push 1
—> thread I loads ===-» thread 1 stores 2-ary +
— thread 2 loads ----» thread 2 stores Store shared

All possible states after two steps

State space

-—p thread 1 loads

—p thread 2 loads

-===p thread 1 stores

-===p thread 2 stores

Load shared
Push 1

2-ary +
Store shared

State space

-—p thread 1 loads

—p thread 2 loads

-===p thread 1 stores

-===p thread 2 stores

Load shared
Push 1

2-ary +
Store shared

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Harmony != Python

tries all possible executions
(...)==[...]1==...

===)= () ==[1]==
f(1) ==f1 ==f[1]
no return, break, continue
pointers

executes just one

11=[1]'=(1)
[LI==0]1=(1)==11=(1,)

f 1 and f[1] are illegal (if f is method)
various flow control escapes
object-oriented

/O In Harmony?

* Input:
o choose expression
- x=choose({1,2,3})
- allows Harmony to know all possible inputs
o const expression

—constx=3

— can be overridden with “-c x=4” flag to harmony
o Output:

- printx+y
—assert x +y <10, (x,y) .

/O In Harmony?

* Input:
o choose expression
- x=choose({1,2,31}) Q 0(

- allows Harm- XS puts
o cons* ‘00 et

DASCRANT
- ca. ,{ \X\Q ~en with “-c x=4” flag to harmony
O Out}

- printx+y
—assert x +y <10, (x,y) .

s@‘eﬁ\

Non-determinism in Harmony

Three sources:
1. choose expressions
2. thread interleavings
3. Interrupts

Limitation: models must be finite!

2]
*

L ‘t“ s ¢
e® P4
K
shared 0 o ®
0. “
L
L L 4 N .0 .
i .
. .
. .
. *
S L 2 ‘t S

Limitation: models must be finite!

2]
*

L
L

That 1s, there must be a finite number of states and edges.
But models are allowed to have cycles.

Executions are allowed to be unbounded!

Harmony checks for possibility of termination.

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Back to our problem...

2 threads updating a shared variable

shared = 0

spawn f()
spawn f()

co N O UT A WN B

finally shared ==

Back to our problem...

2 threads updating a shared variable

shared = 0

def f(): “Critical Section”

spawn f()
spawn f()

co N O UT A WN B

finally shared ==

Back to our problem...

2 threads updating a shared variable

shared = 0

def f(): “Critical Section”

spawn f()
spawn f()

co NN OYUTL A~ WN B

finally shared ==

Goals

Mutual Exclusion: 1 thread in a critical section at time

Progress: a thread can get in when there is no other thread
Fairness: equal chances of getting into CS
... In practice, fairness rarely guaranteed or needed

Mutual Exclusion and Progress

Need both:
o either one is trivial to achieve by itself

Specifying Critical Sections in Harmony

def thread():
while True:
Critical section is here
pass

spawn thread()
spawn thread()

N oo A WIN -

 How do we check mutual exclusion?
* How do we check progress?

Specifying Critical Sections in Harmony

1 | # number of threads in the critical section
2 | in_cs = 0

3 | invariant in_cs in { 0, 1 }

4

5 | def thread():

6 while choose { False, True }:
7 # Enter critical section

8 atomically in_cs += 1

9

10 # Critical section is here
11 pass

12

13 # Exit critical section

14 atomically in_cs -= 1

11

16 | spawn thread()

17 | spawn thread()

 How do we check mutual exclusion?
* How do we check progress?

Specifying Critical Sections in Harmony

O oo ~NOYYUTL H WN B

GEBLRES

=
~N o

number of threads in the critical section
e) mutual exclusion
invariant in_cs in { @, 1 }

def thread():
while choose { False, True }:
Enter critical section
atomically in_cs += 1

Critical section is here
pass

Exit critical section
atomically in_cs -= 1

spawn thread()
spawn thread()

* How do we check mutual exclusion?
* How do we check progress?

Specitying Critical Sections in Harmony

O oo ~NOYWUVTL A WN B

GRELRES

=
~N O

number of threads in the critical section

in_cs = 0 :

invariant in_cs in { 0, 1 } mutual exclusion

def thread(): .
while choose { False, True }: do zero or more times

Enter critical section
atomically in_cs += 1

Critical section is here
pass

Exit critical section
atomically in_cs -= 1

spawn thread()
spawn thread()

* How do we check mutual exclusion?
* How do we check progress?

Specitying Critical Sections in Harmony

O oo ~NO UL A WN B

GRELRES

=
~N O

number of threads in the critical section
D I mutual exclusion
invariant in_cs in { 0, 1 }

def thread():
while choose { False, True }:
Enter critical section

Critical section is here
pass

do zero or more times

Exit critical section
atomically in_cs -= 1

spawn thread()
spawn thread()

* How do we check mutual exclusion?
* How do we check progress?

Specitying Critical Sections in Harmony

1 | # number of threads in the critical section

2 |in_cs = 0 .

4

5 | def thread(): .

6 while choose { False, True }:
7 # Enter critical section

8 atomically in_cs += 1 W
9

10 # Critical section is here

11 pass L :

12 execute critical section
13 # Exit critical section

14 atomically in_cs -= 1

15

16 | spawn thread()

17 | spawn thread()

* How do we check mutual exclusion?
* How do we check progress?

Specitying Critical Sections in Harmony

1 | # number of threads in the critical section

2| in_cs = 0 .

3 | invariant in_cs in { 0, 1 } mutual exclusion

4

5 | def thread(): .

6 while choose { False, True }: do zero or more times
7 # Enter critical section

9

10 # Critical section is here

11 pass L :
12 execute critical section
13 # Exit critical section

14 atomically in_cs -= 1 _

15 decrementin_cs

16 | spawn thread()

17 | spawn thread()

* How do we check mutual exclusion?
* How do we check progress?

Specitying Critical Sections in Harmony

1 | # number of threads in the critical section

2| in_cs = 0 .

3 | invariant in_cs in { 0, 1 } mutual exclusion

4

5 | def thread(): .

6 while choose { False, True }: do zero or more times
7 # Enter critical section

9

10 # Critical section is here

11 pass L :
12 execute critical section
13 # Exit critical section

14 atomically in_cs -= 1 _

15 decrementin_cs

16 | spawn thread()

17 | spawn thread()

Progress: Harmony checks that all thread can terminate

Building a lock
IS hard

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Specification vs implementation

* Spec is fine, but we’ll need an
implementation too

* Sounds like we need a lock

* The question is:

How does one build a lock?

First attempt: a naive lock

l|1in_.cs =0

2 | invariant in_cs in { 0, 1 }

3

4 | lockTaken = False

)

6 | def thread(self):

7 while choose({ False, True }):
8 # Enter critical section
9 await not lockTaken

10 lockTaken = True

11

12 atomically in_cs += 1

13 # Critical section

14 atomically in_cs -= 1

11

16 # Leave critical section
17 lockTaken = False

18

19 | spawn thread(0)

20 | spawn thread(1l)

First attempt: a naive lock

l|1in_.cs =0

2 | invariant in_cs in { 0, 1 }

3

4 | lockTaken = False

S

6 | def thread(self):

7 while choose({ False, True }):
8 # Enter critical section
9 await not lockTaken
10 lockTaken = True

11

12 atomically in_cs += 1

13 # Critical section

14 atomically in_cs -= 1

15

16 # Leave critical section

1 lrg lockTaken = False

18

19 | spawn thread(0)

20 | spawn thread(1l)

First attempt: a naive lock

O oo N H WN B

N 2 D 2 D R S R S
S W ~NOOTUL A WNRERS

in_cs =

0

invariant in_cs in { 0, 1 }

lockTaken = False

def thread(self):

while choose({ False, True }):

Enter critical section
await not lockTaken
lockTaken = True

atomically in_cs += 1
Critical section
atomically in_cs -= 1

Leave critical section
lockTaken = False

spawn thread(0)
spawn thread(1l)

Schedule thread TO: init()

o Line 1: Initialize in_cs to 0

o Line 4: Initialize lockTaken to False

o Thread terminated
Schedule thread T3: thread(1)

o Line 7: Choose True

o Preempted in thread(1) about to store True into lockTaken in line 10
Schedule thread T2: thread(0)

o Line 7: Choose True

o Line 10: Set lockTaken to True (was False)

o Line 12: Setin_cs to 1 (was 0)

o Preempted in thread(0) about to execute atomic section in line 14
Schedule thread T3: thread(1)

o Line 10: Set lockTaken to True (unchanged)

o Line 12: Setin_cs to 2 (was 1)

o Preempted in thread(1) about to execute atomic section in line 14
Schedule thread T1: invariant()

o Line 2: Harmony assertion failed

Second attempt: flags

1|in_cs =0

2 | invariant in_cs in { 0, 1 }

3

4 | flags = [False, False]

S5

6 | def thread(self):

7 while choose({ False, True }):
8 # Enter critical section
9 flags|[self] = True

10 await not flags[1l - self]
11

12 atomically in_cs += 1

13 # Critical section

14 atomically in_cs -= 1

15

16 # Leave critical section
1 b7 flags[self] = False

18

19 | spawn thread(@)

20 | spawn thread(1l)

Second attempt: flags

O 0o ~N O WU A WN B

o Nahr2LRES

N
S ©

in_cs = 0
invariant in_cs in { 0, 1 }

flags = [False, False]

def thread(self):

while choose({ False, True }):

Enter critical section
flags[self] = True
await not flags[1l - self]

atomically in_cs += 1
Critical section
atomically in_cs -= 1

Leave critical section
flags[self] = False

spawn thread(9)
spawn thread(1)

show intent to enter critical section

Second attempt: flags

O oo ~NO UL H WN -

GRLRES

N BB
© © o~y O

in_cs = 0
invariant in_cs in { 0, 1 }

flags = [False, False]

def thread(self):

while choose({ False, True }):

Enter critical section
flags[self] = True
await not flags[1l - self]

atomically in_cs += 1
Critical section
atomically in_cs -= 1

Leave critical section
flags[self] = False

spawn thread(@)
spawn thread(1)

show intent to enter critical section

wait until there’s no one else

Second attempt: flags

O oo ~NOYWULT H WN B

L e e e e S i =
S O oo N S WNEFES

in_cs = 0
invariant in_cs in { 0, 1 }

flags = [False, False]

def thread(self):

while choose({ False, True }):

Enter critical section
flags|[self] = True
await not flags[1l - self]

atomically in_cs += 1
Critical section
atomically in_cs -= 1

Leave critical section
flags|/self] = False

spawn thread(9)
spawn thread(1l)

Summary: some execution cannot terminate
Here is a summary of an execution that exhibits the issue:

« Schedule thread TO: init()

o Line 1: Initialize in_cs to 0

o Line 4: Initialize flags to [False, False]

o Thread terminated
« Schedule thread T1: thread(0)

o Line 7: Choose True

o Line 9: Set flags[0] to True (was False)

o Preempted in thread(0) about to load variable flags[1] in line 10
» Schedule thread T2: thread(1)

o Line 7: Choose True

o Line 9: Set flags[1] to True (was False)

o Preempted in thread(1) about to load variable flags[0] in line 10

Final state (all threads have terminated or are blocked):

* Threads:
o T1: (blocked) thread(0)
» about to load variable flags[1] in line 10
o T2: (blocked) thread(1)
» about to load variable flags[0] in line 10

Third attempt: turn variable

1| in_cs =0

2 | invariant in_cs in { 0, 1 }

3

4 | turn = 0

5

6 | def thread(self):

7 while choose({ False, True }):
8 # Enter critical section
9 turn = 1 - self

10 await turn == self

11

12 atomically in_cs += 1

13 # Critical section

14 atomically in_cs -= 1

11

16 # Leave critical section
17

18 | spawn thread(@)

19 | spawn thread(1)

Third attempt: turn variable

1| in_cs =0

2 | invariant in_cs in { @, 1 }

3

4 | turn = 0

5

6 | def thread(self):

7 while choose({ False, True }):
8 # Enter critical section
ol tmo1 s L tervor
10 await turn == self

11

12 atomically in_cs += 1

13 # Critical section

14 atomically in_cs -= 1

11

16 # Leave critical section
17

18 | spawn thread(@)

19 | spawn thread(1)

Third attempt: turn variable

1| in_cs =0

2 | invariant in_cs in { @, 1 }

3

4 | turn = 0

5

6 | def thread(self):

7 while choose({ False, True }):

8 # Enter critical section

9 turn = 1 - self after you...
10 await turn == self wait for your turn
11

12 atomically in_cs += 1

13 # Critical section

14 atomically in_cs -= 1

15

16 # Leave critical section

17

18 | spawn thread(@)

19 | spawn thread(1)

Third attempt: turn variable

O oo ~NOYULL S WN B

ol el il el el
Oo~NOOTU»L P WNRERS

in_cs

0

invariant in_cs in { @, 1 }

turn

def thread(self):

while choose({ False, True }):

Enter critical section
turn = 1 - self
await turn == self

atomically in_cs += 1
Critical section

atomically in_cs -= 1

Leave critical section

spawn thread(@)
spawn thread(1)

Summary: some execution cannot terminate
Here is a summary of an execution that exhibits the issue:

« Schedule thread TO: init()
o Line 1: Initialize in_cs to 0
o Line 4: Initialize turn to 0
o Thread terminated
« Schedule thread T2: thread(1)
o Line 7: Choose False
o Thread terminated
« Schedule thread T1: thread(0)
o Line 7: Choose True
o Line 9: Set turn to 1 (was 0)
o Preempted in thread(0) about to load variable turn in line 10

Final state (all threads have terminated or are blocked):

e Threads:
o T1: (blocked) thread(0)
= about to load variable turn in line 10
o T2: (terminated) thread(1)

Peterson’s Algorithm: flags & turn

l|incs =0

2 | invariant in_cs in { 0, 1 }

3

4 | sequential flags, turn

5 | flags = [False, False]

6 | turn = choose({0@, 1})

14

8 | def thread(self):

9 while choose({ False, True }):
10 # Enter critical section
11 flags[self] = True

12 turn = 1 - self

13 await (not flags[1l - self]) or (turn == self)
14

15 atomically in_cs += 1

16 # Critical section

17 atomically in_cs -= 1

18

19 # Leave critical section
20 flags|[self]| = False

21

22 | spawn thread(@)

23 | spawn thread(1l)

Peterson’s Algorithm: flags & turn

1| 1in_cs =0

2 | invariant in_cs in { 0, 1 }

3

4 | sequential flags, turn

5 | flags = [False, False]

6 | turn = choose({0, 1})

7

8 | def thread(self):

9 while choose({ False, True }):
10 # Enter critical section
11 flags[self] = True

12 turn = 1 - self

13 await (not flags[1l - self]) or (turn == self)
14

15 atomically in_cs += 1

" ¢ Critical saction
17 atomically in_cs -= 1

18

19 # Leave critical section
20 flags|[self]| = False

21

22 | spawn thread(@)

23 | spawn thread(1l)

Peterson’s Algorithm: flags & turn

l|in.cs =0

2 | invariant in_cs in { 0, 1 }

3

5 | flags = [False, False]

6 | turn = choose({0, 1})

7

8 | def thread(self):

9 while choose({ False, True }):
10 # Enter critical section
11 flags[self] = True

12 turn = 1 - self

13 await (not flags[1l - self]) or (turn == self)
14

15 atomically in_cs += 1

16 # Critical section
17 atomically in_cs -= 1

18

19 # Leave critical section
20 flags|[self]| = False

21

22 | spawn thread(@)

23 | spawn thread(1l)

Peterson’s Algorithm: flags & turn

l|in.cs =0

2 | invariant in_cs in { 0, 1 }

3

4 | sequential flags, turn load and store instructions are atomic
Z :l:ﬁs:c,[‘ozz:!z;éf:;;e] uses flags and turn variable (3 bits total)
7

8 | def thread(self):

9 while choose({ False, True }):

10 # Enter critical section

11 flags[self] = True

12 turn = 1 - self

13 await (not flags[1l - self]) or (turn == self)

14

15 atomically in_cs += 1

16 # Critical section
17 atomically in_cs -= 1

18

19 # Leave critical section

20 flags|[self]| = False

21

22 | spawn thread(@)

23 | spawn thread(1l)

Peterson’s Algorithm: flags & turn

l|in.cs =0

2 | invariant in_cs in { 0, 1 }

3

4 | sequential flags, turn load and store instructions are atomic
Z :::ﬁs:c,[‘oz:z;éf:;e] uses flags and turn variable (3 bits total)
7

8 | def thread(self):

9 while choose({ False, True }):

10 # Enter critical section

11 flags[self] = True first indicate intention to enter critical section
12 turn = 1 - self

13 await (not flags[1l - self]) or (turn == self)

14

15 atomically in_cs += 1

16 # Critical section
17 atomically in_cs -= 1

18

19 # Leave critical section

21

22 | spawn thread(@)

23 | spawn thread(1l)

Peterson’s Algorithm: flags & turn

O oo ~NOYULLH WN B

GRELRES

N 2R
© O 00 ~N»

BRR

in_cs = 0
invariant in_cs in { 0, 1 }

sequential flags, turn load and store instructions are atomic
flags = [False, False |
turn = choose({0, 1})

uses flags and turn variable (3 bits total)

def thread(self):
while choose({ False, True }):

Enter critical section
flags[self] = True first indicate intention to enter critical section
turn = 1 - self also give other thread a turn first

await (not flags[1l - self])Yor (turn == self)

Leave critical section

flags[self] = False no longer in critical section

atomically in_cs += 1
Critical section In critical section
atomically in_cs -= 1

spawn thread(@)
spawn thread(1)

Peterson’s Algorithm: flags & turn

O o ~NO UL H WN B

GRELRES

N
S b

BRR

in_cs = 0
invariant in_cs in { 0, 1 }

sequential flags, turn load and store instructions are atomic
flags = [False, False |
turn = choose({0, 1})

uses flags and turn variable (3 bits total)

def thread(self):
while choose({ False, True }):
Enter critical section
flags[self] = True first indicate intention to enter critical section
turn = 1 - self also give other thread a turn first

await (not flags[1l - self])or (turn == self) QERAVEIR{INeIaKeIR=lIalcINeelgleli{[e]sl

Leave critical section

flags[self] = False no longer in critical section

atomically in_cs += 1
Critical section In critical section
atomically in_cs -= 1

spawn thread(@)
spawn thread(1)

Proving a

CO
P

Ncurrent

rogram

correct

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

So, we proved Peterson’s Algorithm
correct by brute force, enumerating all
possible executions. We now know that it
WOrks.

But how does one prove it by deduction?
so one understands why it works...

64

What and how?

* Need to show that, for any execution, all

states reached satisfy mutual exclusion

o in other words, mutual exclusion is invariant
invariant = predicate that holds in every reachable state

Whatis an invariant?

A property that holds in all reachable states
(and possibly in some unreachable states as well)

What is a property?
A property is a set of states

often succinctly described using a predicate
(all states that satisfy the predicate and no others)

Invariant Property

initial state

Reachable
States

Invariant Property

Invariant Property

initial state

States in which

mutual exclusion
holds

Reachable
States

Invariant Property

Invariant Property

initial state

States in which

mutual exclusion
holds

Reachable
States

Includes states where .
mutual exclusion is Invariant Property
violated

How to prove an invariant?

* Need to show that, for any execution, all
states reached satisfy the invariant

* Sounds similar to sorting:
o Need to show that, for any list of numbers, the
resulting list is ordered

* Let’s try proof by induction on the length of
an execution

Proof by induction

You want to prove that some Induction
Hypothesis IH(n) holds for any n:
o Base Case:

— show that IH(0) holds
o Induction Step:

— show that if IH(i) holds, then so does IH(i+1)

Proof by induction in our case

To show that some [H holds for an
execution E of any number of steps:
o Base Case:
— show that IH holds in the initial state(s)
o Induction Step:

- show that if IH holds in a state produced by E,
then for any possible next step s, IH also holds
in the state produced by E + [s]

Example

* Theorem: if T is in the critical section,
then flags[T] = True

* Base case: true because initially T is not
in the critical section and False implies
anything

* Induction: easy to show (using Hoare
logic) because flags[T] can only be
changed by T itself

Data Races

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Peterson’s Reconsidered

* Assumes that LOAD and STORE
Instructions are atomic

* Not guaranteed on a real processor

* Also not guaranteed by C, Java, Python,

in_cs = 0
invariant in_cs in { 0, 1 }

sequential flags, turn oads and Stores are atomic
flags = [False, False]

turn = choose({0, 1})

def thread(self):
while choose({ False, True }):
Enter critical section
flags[self] = True
turn = 1 - self
await (not flags[1l - self]) or (turn == self)

atomically in_cs += 1
Critical section
atomically in_cs -= 1

NP RRERRRRRBR R
S WK NGO P WNRPRPOOWOONOOULH WN R

Leave critical section
flags/self| = False

spawn thread(@)
spawn thread(1)

N NN
w N P

For example

CPU with 16-bit architecture

32-bit integer variable x stored in memory in two
adjacent locations (aligned on word boundary)
Initial valueis 0

Thread 1 writes FFFFFFFF to x (requires 2 STOREsS)
Thread 2 reads x (requires 2 LOADs)

What are the possible values that thread 2 will read?

76

For example

CPU with 16-bit architecture

32-bit integer variable x stored in memory in two
adjacent locations (aligned on word boundary)
Initial value is 0

Thread 1 writes FFFFFFFF to x (requires 2 STOREsS)
Thread 2 reads x (requires 2 LOADs)

What are the possible values that thread 2 will read?
FFFFFFFF
00000000
FFFF0000

®
®
®
o OOOOFFFF

7

Other examples

* In Python, integers are arbitrary precision
o thatis, each integer variable is a complex data
structure, and an operation may require
multiple loads and stores

* Suppose your C compiler decides to pack
multiple bits in a single word
o E.g., flags[0], flags[1], and turn
o Then setting a bit involves a load and a store

78

Concurrent memory access

* Hardware may also cause problems in

efforts to improve performance
o buffering of writes

o caching of reads

o out-of-order execution

» Because of all these issues, programming
languages will typically leave the
outcome of concurrent operations to a

variable undefined
o if at least one of those operations is a store .

Data Race

 When two or more threads wish to access the same
variable at the same time

* And at least one access is a STORE

* Then the semantics of the outcome is undefined

o Thatis:

— Thevalue stored in the variable is undefined
— The value loaded (if any) is undefined
— Undefined means random (or worse, like a crash)

Harmony “sequential” statement

» sequential turn, flags in Peterson’s

e ensures that loads/stores are atomic

* that is, concurrent operations appear to be
executed sequentially

* Thisis called “sequential consistency”
For example

e Shared variable x contains 3

 Thread A stores 4 into x

 Thread B loads x

o With atomic load/store operations, B will read either 3 or 4
o With normal operations, the value that B reads is undefined

Sequential consistency

 Java has a similar notion:
o volatileint x;
o All accesses to volatile variables are sequentially
consistent (but not whole program)

* Not to be confused with the same keyword in C
and C++ though...

* Loading/storing volatile (sequentially
consistent) variables is more expensive than

loading/storing ordinary variables

o because it restricts CPU and/or compiler
optimizations

o e.g.,rules out caching

Peterson’s Reconsidered Again

* Peterson’s algorithm is correct with

atomic LOAD and STORE instructions
o hardware supports such instructions but
they are very expensive

* Peterson’s can be generalized to >2

processes
o even more STOREs and LOADs

Too inefficient in practice

Specitying a
lock

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Back to basics: specitying a lock

* What does a lock do exactly?
* What if we want more than one?

Harmony interlude: pointers

* If xis a shared variable, ?x is the address of x

* |f pis avariable and p contains ?x, then we say
that p is a pointer and it points to x

* Finally, !p refers to the value of x

Specifying a lock

O oo NOYULTL A WN -

o
= S

def Lock() returns result:
result = False

def acquire(lk):
atomically when not !'lk:
Ilk = True

def release(lk):
atomically:

assert llk
Ilk = False

Specifying a lock

1 | def Lock() returns result:
2 result = False

3

4 | def acquire(1k):
5 atomically when not !lk:

6 ks ="lirue

/

8 | def release(lk): releases lock atomically

9 atomically:

10 assert !lk

11 Ilk = False

Critical Section using a lock

1 | from synch import Lock, acquire, release
2

3 | shared = 0

4 | thelock = Lock()

5

6 | def f():

7 acquire(?thelock)
8 shared += 1

9 release(?thelock)
10

11 | spawn f()

12 | spawn f()

13

14 | finally shared ==

Critical Section using a lock

1 | from synch import Lock, acquire, release
2 :

3 | shared = 0 pontains Lock Spec
4 | thelock = Lock()

5

6 | def f():

7 acquire(?thelock)

8 shared += 1

9 release(?thelock)

10

11 | spawn f()

12 | spawn f()

13

14 | finally shared ==

“Ghost” state

* We say that a lock is held or owned by a thread
o implicit “ghost” state (not an actual variable)
o nonetheless can be used for reasoning

* Two important invariants:
1. T@CriticalSection = T holds the lock
2. at most one thread can hold the lock

Together guarantee mutual exclusion

Many (most?) systems do not keep track of who
holds a particular lock, if anybody

Implementing
a lock

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Implementing a lock

We saw that it is hard and inefficient to
implement a lock with just LOAD and
STORE instructions

Enter Interlock Instructions

Machine instructions that do multiple
shared memory accesses atomically

e e.g., test_and_sets
o setssto True
o returns old value of s

* |.e., does the following:
- LOAD 0, s # load variable s into register r0
- STORE s, 1 # store TRUE in variable s

* Entire operation is atomic
o other machine instructions cannot interleave .

Lock implementation (“spinlock”)

O oo ~NOULL A WN -

e N e el
NoOUhA WNRES

def test_and_set(s) returns result:

def

def

def

def

atomically:
result = !Is
Is = True

atomic_store(p, v):
atomically !p = v

Lock() returns result:
result = False

acquire(lk):
while test_and_set(1lk):
pass

release(lk):
atomic_store(lk, False)

| specification of the CPU’s
test and set functionality

specification of the CPU’s
" atomic store functionality

- lock implementation

Specification vs Implementation

O oo NOYYUIL B WN B

=
=

def Lock() returns result:
result = False

def acquire(lk):
atomically when not !lk:
11k = True

def release(lk):
atomically:
assert !lk
1lk = False

O o ~NO Ul B WN P

el Tl sl =
NoO U WN RS

def

def

def

def

def

test_and_set(s) returns result:
atomically:

result = !s

s = True

atomic_store(p, v):
atomically !p = v

Lock() returns result:
result = False

acquire(lk):
while test_and_set(lk):
pass

release(lk):
atomic_store(lk, False)

Specification: describes what an abstraction does m

Implementation: describes Zow

Spinlocks and Time Sharing

» Spinlocks work well when threads on
different cores need to synchronize
* But how about when it involves two

threads time-shared on the same core:
o when there is no pre-emption?

o when there is pre-emption?

Spinlocks and Time Sharing

» Spinlocks work well when threads on
different cores need to synchronize
* But how about when it involves two

threads time-shared on the same core:
o when there is no pre-emption?

— can cause all threads to get stuck while oneis
trying to obtain a spinlock

o when there is pre-emption?

Spinlocks and Time Sharing

» Spinlocks work well when threads on
different cores need to synchronize
* But how about when it involves two

threads time-shared on the same core:
o when there is no pre-emption?

— can cause all threads to get stuck while oneis
trying to obtain a spinlock
o when there is pre-emption?

— can cause delays and waste of CPU cycles while
a thread is trying to obtain a spinlock

Context switching in Harmony

* Harmony allows contexts to be saved
and restored (i.e., context switch)

or=stopp

— stops the current thread and stores contextin /p
ogo(/p)r

— adds a thread with the given context to the bag

of threads. Thread resumes from stop
expression, returning r

Locks using stop and go

1 | def Lock() returns result: .

2 result = { .acquired: False, .suspended: []| } acquired: boolean
3 .suspended: queue of contexts
4 | def acquire(lk):

5 atomically:

6 if lk->acquired:

7 stop ?1k->suspended|len lk->suspended

8 assert lk->acquired

9 else:

10 lk->acquired = True

1 |

12 | def release(lk):

13 atomically:

14 assert lk->acquired

15 if lk->suspended == | |:

16 lk->acquired = False

17 else:

18 go (lk->suspended|[0@]) ()

19 del lk->suspended| 0]

Locks using stop and go

O oo ~NOO UL & WN B

el el el el
O oo ~NOOULH»WNRES

def Lock() returns result:

result = { .acquired: False, .suspended: [] }

def acquire(lk):
atomically:
if lk->acquired:

stop ?1k->suspended|len lk->suspended

assert lk->acquired
else:
lk->acquired = True

def release(lk):
atomically:
assert lk->acquired
if lk->suspended == | |:
lk->acquired = False
else:
go (lk->suspended|[0]) ()
del 1lk->suspended|0]

.acquired: boolean

resume first thread on wait queue

.suspended: queue of contexts

put thread on wait queue

Locks using stop and go

def Lock() returns result:
result = { .acquired: False, .suspended: []| }

1

2

3

4 | def acquire(lk):
5 atomicallv:
6

7

8

Similar to a Linux “futex’: if there 1s no contention
? (hopefully the common case) acquire() and release() are

10

.1 cheap. If there 1s contention, they involve a context switch.
12

13 GlU UL Ly -

14 assert lk->acquired

15 if lk->suspended == | |:

16 lk->acquired = False

(7 else:

18 go (lk->suspended|[0@]) ()

19 del lk->suspended @]

Choosing modules in Harmony

 “synch” is the (default) module that has
the specification of a lock

* “synchS” is the module that has the
stop/go version of lock

* you can select which one you want:

harmony -m synch=synchS x.hny

* “synch” tends to be faster than “synchS”
- smaller state graph

Atomic Section # Critical Section

Atomic Section Critical Section

only one thread can execute multiple threads can execute
concurrently, just not within a

critical section

rare programming language ubiquitous: locks available in
paradigm many mainstream
programming languages
good for specifying interlock good for implementing
iInstructions concurrent data structures

Data Race # Race Condition

* A Data Race occurs when two threads try
to access the same variable and at least
one access is non-atomic and at least
one access is an update.

— The outcome of the operations is undefined

* A Race Condition occurs when the
correctness of the program depends on
ordering of variable access

— Race Condition can happen without a Data Race

Data Race # Race Condition

* Data Race: Harmony can automatically
detect these because Harmony
enumerates all behaviors and fails if
there is undefined behavior

* Race Condition: Harmony can only detect
these if you tell Harmony what it is that
you want using assert, invariant, or
finally

— or by explicitly enumerating the correct
behaviors, as we’ll see later .

Demo Time

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Harmony demo

Demo 1:

Demo 2: no data race
data race

def T():
X = x + 1

atomic load(p) returns v:
atomically v = Ip

atomic store(p, v):
atomically !p = v

def g():

X = x + 1

T(O:

spawn T (: .
[() atomic _store(?x,

v atomic load(?x)
spawn g() -

g():

atomic_store(?x, atomic _load(?x)

spawn T ()
spawn g()

Demo 3: same
semantics as
Demo 2:

sequential x

= 1:)

spawn T()

- 1:)

spawn g()

111

Harmony demo

Demo 4: still a data race

atomic load(p)

atomically v = Ip

atomic _store(p,
atomically

T():
atomic store(?x,

g():
atomic store(?x,

spawn f()
spawn g()

returns v.

V).
I'p = v

<+ 1)

atomic _load(?x)

-

Demo 5: data race
freedom does not imply
no race conditions

sequential X
finally x == 2

def f():
X += 1

def g():
X += 1

spawn T()
spawn g()

112

Harmony demo

Demo 7: implementation

Demo 6: spec of using critical section

what we want _ _
from synch import Lock, acquire, release

finally x == 2
finally x == 2

X = 0

thelock = Lock()

def f():
atomically x += 1 def f():
acquire(?thelock)
x +=1
release(?thelock)

def g():
atomically x += 1

g():
acquire(?thelock)
X += 1
release(?thelock)

spawn T ()
spawn g()

spawn T()
spawn g()

113

Harmony demo

Demo 8: broken implementation using two critical sections

from synch import Lock, acquire, releasy
finally x == 2

X = 0
thelockl = Lock()
thelock? Lock ()

def T():
acquire(?thelockl)
X +=1
release(?thelockl)

g():
acquire(?thelock?)
x += 1
release(?thelock?)

spawn T()
spawn g()

114

Concurrent
Data Structure
Consistency

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Data Structure consistency

* Each data structure maintains some consistency
property
o e.g.,inalinked list, there is a head, a tail, a list of
nodes such that head points to first node, tail points
to the last node, and each node points to the next
one except the last, which points to None. However,
if the list is empty, head and tail are both None.

Consistency using locks

* Each data structure maintains some consistency
property

o e.g.,inalinked list, there is a head, a tail, a list of
nodes such that head points to first node, tail points
to the last node, and each node points to the next
one except the last, which points to None. However,

if the list is empty, head and tail are both None.
* You can assume the property holds right after
obtaining the lock
* You must make sure the property holds again
right before releasing the lock

Consistency using locks

* Each data structure maintains some consistency
property

* [nvariant:
o lock not held = data structure consistent

* Orequivalently:
o data structure inconsistent = lock held

Building a concurrent queue

* g =queue.Queue(): initialize a new queue

* queue.put(g, v): add v to the tail of queue g

* v=queue.get(qg): returns None if g is empty or
v if v was at the head of the queue

How important are concurrent queues?

* Answer: all important
o any resource that needs scheduling
- CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o Inter-process communication
— Posix pipes:
e catfile|tra-zA-Z | grep RVR
o actor-based concurrency
O ...

How important are concurrent queues?

* Answer: all important
o any resource that needs scheduling
- CPU run queue
- disk, network, printer waiting queue
- lock waiting queue
o Inter-process communication
— Posix pipes:
e catfile|tra-zA-Z | grep RVR
o actor-based concurrency
O ...

Good performance is critical!

Specitying a eencurrent queue

1 | def Queue() returns empty:
2 empty = [|

3

4 | def put(q, v):

5 g += [v,]

6

7 | def get(q) returns next:
8 if g =="[l:

9 next = None

10 else:

11 next = (!q)[0]
12 del (1q)[@]

Specifying a concurrent queue

1 | def Queue() returns empty:
1 | def Queue() returns empty: 2 empty = [
2 empty = [3
3 4 | def put(q, v):
4 | def put(q, v): 5 atomically !q += [v,]
S5 1q += [v,] 6
6 7 | def get(q) returns next:
7 | def get(q) returns next: 2 atomically:
8 if g =="[l: 9 7 o .
9 next = None)
10 next = None
10 else: 11 else-
11 = (! (] '
1 Z:Tt(' g[git | 12 next = (!1q)[0]
i 13 del (1q)[0]

Sequential Concurrent

Example of using a queue

O oo ~NOYULL B WN -

ol
S W N RS

import queue

def sender(q, v): |
enqueue v onto !gq
queue.put(q, v)
def receiver(q):
let v = queue.get(q):
assert v in { None, 1, 2 }

dequeue and check

demoq = queue.Queue() Create queue
spawn sender(?demoqg, 1)
spawn sender(?demoq, 2)
spawn receiver(?demoq)
spawn receiver(?demoq)

Specifying a concurrent queue

O 0o NO UL H WN -

el el
w N RS

def Queue() returns empty:
empty = ||

def put(q, v):
atomically !q += [v,]

def get(q) returns next:
atomically:
Lo aE=—nlE
next = None
else:
next = (1gq)[0]
del (!q)[@]

Not a good implementation because
* operations are O(n)
* code uses atomically

compiler cannot generate code

Implementing
a concurrent
queue

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Queue implementation, vl

O oo ~NOYUL B WN B

el el ol el
Ui WN RS

from synch import Lock, acquire, release

from alloc import malloc, free

def Queue() returns empty:

empty = { .head: None, .tail: None, .lock: Lock() }

def put(q, v):

let node = malloc({ .value: v, .next:

acquire(?g->lock)
if g->tail == None:
g->tail = g->head = node
else:
g->tail->next = node
g->tail = node
release(?q->lock)

None }):

None

Queue implementation, vl

O o NOoOUL A WN B

el el ol
Ui WN RS

None

from synch import Lock, acquire, TS)
from alloc import malloc, free dynamic memory allocation

def Queue() returns empty:
empty = { .head: None, .tail: None, .lock: Lock() }

def put(q, v):
let node = malloc({ .value: v, .next: None }):

acquire(?g->lock)

if g->tail == None:
g->tail = g->head = node

else:
q->tail->next = node
g->tail = node

release(?g->lock) .

Queue implementation, vl

.value
.next None

1 | from synch import Lock, acquire, release cue
2 | from alloc import malloc, free 1\ qu
- emp

4 | def Queue() returns empty:

5 empty = { .head: None, .tail: None, .lock: Lock() }

6

7 | def put(q, v):

8 let node = malloc({ .value: v, .next: None }):

9 acquire(?g->lock)

10 if g->tail == None:

11 g->tail = g->head = node

12 else:

13 g->tail->next = node

14 g->tail = node

15

release(?g->lock) .

Queue implementation, vl

O o NOoOUL A WN B

el el ol
Ui WN RS

None

from synch import Lock, acquire, release
from alloc import malloc, free

def Queue() returns empty:
empty = { .head: None, .tail: None, .lock: Lock() }

def put(q, v):
let node = malloc({ .value: v, .next: None }): allocate node
acquire(?g->lock)
if g->tail == None:
g->tail = g->head = node
else:
g->tail->next = node
g->tail = node

release(?g->lock) .

Queue implementation, vl

O o NOoOUL A WN B

el el ol
Ui WN RS

from synch import Lock, acquire, release
from alloc import malloc, free

def Queue() returns empty:

empty = { .head: None, .tail: None, .lock:

def put(q, v):
let node = malloc({ .value
acquire(?g->lock)
if g->tail == None:
g->tail = g->head = node
else:
g->tail->next = node
g->tail = node
release(?g->lock)

A

gréb lock

Lock() }

None

Queue implementation, vl

O o NOoOUL A WN B

el el ol
Ui WN RS

None

from synch import Lock, acquire, release
from alloc import malloc, free

def Queue() returns empty:
empty = { .head: None, .tail: None, .lock: Lock() }

def put(q, v):
let node = malloc({ .value: v, .next: None }):
acquire(?g->lock)
if g->tail == None:
g->tail = g->head = node
else: —
g->tail->next = node
g->tail = node

release(?g->lock) .

—

Queue implementation, vl

None

1 | from synch import Lock, acquire, release

2 | from alloc import malloc, free

3

4 | def Queue() returns empty:

5 empty = { .head: None, .tail: None, .lock: Lock() }
6

7 | def put(q, v):

8 let node = malloc({ .value: v, .next: None }):
9 acquire(?g->lock)

10 if g->tail == None:

11 g->tail = g->head = node

12 else:

13 g->tail->next = node

14 g->tail = node

15

release(?g->1lock) release lock .

Queue implementation, vl

17
18
19
20
2l
22
23
24
25
26
27
28

def get(q) returns next:
acquire(?qg->lock)
let node = g->head:
if node == None:
next = None
else:
next = node->value
g->head = node->next

if g->head == None:
g->tail = None
free(node)

release(?g->lock)

.value
.next

.value
.next

None

Queue implementation, vl

None

17 | def get(q) returns next:

18 acquire(?g->Llock)

19 let node = g->head: N
20 i1f node == None:

21 next = None

22 else:

23 next = node->value

24 gq->head = node->next
25 if gq->head == None:

26 g->tail = None

27 free(node) -
28 release(?g->lock)

Queue implementation, vl

.value .value
.next .next None

17 | def get(q) returns next:

18 acquire(?g->lock)

19 let node = g->head:

20 if node == None:

21 next = None

22 else:

23 next = node->value

24 gq->head = node->next

25 if g->head == None:

Z: AT 112//0c'd memory must be
= e) explicitly released
28 release(?g->lock)

Concurrent queue v2: 2 locks

O 00 NOUL B WN -

Il ol el
A WNPEPOS

.head
tail
.hdlock
llock

from synch import Lock, acquire, release, atomic_load, atomic_store
from alloc import malloc, free

def Queue() returns empty:
let dummy = malloc({ .value: (), .next: None }):
empty = { .head: dummy, .tail: dummy,
.hdlock: Lock(), .tllock: Lock() }

def put(q, v):
let node = malloc({ .value: v, .next: None }):
acquire(?g->tllock)
atomic_store(?g->tail->next, node)
g->tail = node
release(?qg->tllock)

Concurrent queue v2: 2 locks

O 0 NOULPE WN -

Il ol el
P WNREROS

.head
Aail
.hdlock
llock

from synch import Lock, acquire, release, atomic_load, atomic_store
from alloc import malloc, free

def Queue() returns empty:
let dummy = malloc({ .value: (), .next: None }):
empty = { .head: dummy, .tail: dummy,
.hdlock: Lock(), .tllock: Lock() }

def put(q, v):
let node = malloc({ .value: v, .next: None }):
acquire(?g->tllock)
atomic_store(?g->tail->next, node)
g->tail = node
release(?g->tllock)

atomically g->tail->next = node

Concurrent queue v2: 2 locks

16
17
18
19
20
21
22
23
24
25
26
27

ail

.hdlock
tllock

def get(q) returns next:
acquire(?q->hdlock)
let dummy = g->head
let node = atomic_load(?dummy->next):
1f node == None:
nhext = None
release(?7q->hdlock)
else:
next = node->value
g->head = node
release(?7q->hdlock)
free(dummy)

Concurrent queue v2: 2 locks

ail
.hdlock
tllock

16 | def get(q) returns next:

17 acquire(?q->hdlock)

18 let dummy = g->head

19 let node = atomic_load(?dummy->next):

20 1f node == None:)

1 et one No contention for concurrent
22 release(?q->hdlock) enqueue and dequeue operations!
23 else: =» more concurrency =¥ faster
24 next = node->value

25 g->head = node

26 release(?q->hdlock)

27 free(dummy)

Concurrent queue v2: 2 locks

ail
.hdlock
tllock

16 | def get(q) returns next:

17 acquire(?q->hdlock)

18 let dummy = g->head

19 let node = atomic_load(?dummy->next):

20 1f node == None:)

1 et one No contention for concurrent
22 release(?q->hdlock) enqueue and dequeue operations!
23 else: =» more concurrency =¥ faster
24 next = node->value

25 g->head = node

26 release(?q->hdlock)

27 free(dummy)

Needs to avoid data race on
dummy->next when queue is empty .

Fine-Grained
_ocking

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Global vs. Local Locks

* The two-lock queue is an example of a data
structure with finer-grained locking

* Aglobal lockis easy, but limits concurrency

* Fine-grained or local locking can improve
concurrency, but tends to be trickier to get right

Sorted Linked List with Lock per Node

1 | from synch import Lock, acquire, release
2 | from alloc import malloc, free
3
4 | def _node(v, n) returns node: # allocate and initialize
5 node = malloc({ .lock: Lock(), .value: v, .next: n })
6
7 | def _find(lst, v) returns pair:
8 var before = l1st
9 acquire(?before->lock)
10 var after = before->next
° —00 -
11 acquire(?after->lock) represented by (1’ NOHC)
12 while after->value < (@, v): ¢ V represented by (09 V)
13 release(?before->lock) e represented by (1, None)
¢ Deionel~dar er Note that Vv: (-1, None) < (0, v) < (1, None)
15 after = before->next . . .
16 acquire(?after->lock) (leXICOgraphlcal orderlng)
17 pair = (before, after)
18
19 | def SetObject() returns object:
20 object = _node((-1, None), _node((1l, None), None)) .

Sorted Linked List with Lock per Node

O oo NOYULPDD WN -

N R RRRRRRRERR
S OWoo~NOYUI P WINPEOS

—00 .value .value 0
. .nextg . .nextg . .nextg None
from synch import Lock, acquire, release
from alloc import malloc, free

def _node(v, n) returns node: # allocate and initialize
node = malloc({ .lock: Lock(), .value: v, .next: n })

208 e diis B0 B oL Sk Helper routine to find and lock two
var before = 1st

e P consecutive nodes before and after such that

var after = before->next before = value < v < after — value
acquire(?after->lock)
while after->value < (0, v):
release(?before->lock)
before = after
after = before->next
acquire(?after->lock)
pair = (before, after)

def SetObject() returns object:
object = _node((-1, None), _node((1l, None), None)) .

Sorted Linked List with Lock per Node

—00 .value .value oo
P next — Pl next — I .nextg None

1 | from synch import Lock, acquire, release

2 | from alloc import malloc, free

3

4 | def _node(v, n) returns node: # allocate and initialize

5 node = malloc({ .lock: Lock(), .value: v, .next: n })

6

Gl R UK PO Helper routine to find and lock two

8 var before = lst .

9 b tore—>Tock) consecutive nodes before and after such that
10 var after = before->next before = value < v < after — value
11 acquire(?after->lock)

12 while after->value < (0, v):

13 release(?before->lock) Hand_over hand locklng

14 before = after

5 gf i efone 0okt (good for data structures

16 acquire(?after->lock) .

17 pair - (before, after) without cycles)

18

19 | def SetObject() returns object:

20

object = _node((-1, None), _node((1l, None), None)) .

Sorted Linked List with Lock per Node

def insert(lst, v):
let before, after = _find(lst, v):
if after->value '= (0, v):
before->next = _node((@, v), after)
release(?after->lock)
release(?before->lock)

def remove(lst, v):
let before, after = _find(1lst, v):

if after->value == (0, v):
before->next = after->next
free(after)

else:

release(?after->lock)
release(?before->lock)

def contains(lst, v) returns present:
let before, after = _find(lst, v):
present = after->value == (0, v)
release(?after->lock)
release(?before->lock)

Sorted Linked List with Lock per Node

def insert(lst, v):
let before, after = _find(lst, v):
if after->value '= (0, v):
before->next = _node((@, v), after)
release(?after->lock)
release(?before->lock)

Multiple threads can access the

def remove(lst, v): list simultaneously, but they
let before, after = _find(lst, v): can’t overtake one another
if after->value == (0, v):
before->next = after->next
free(after)
else:

release(?after->lock)
release(?before->lock)

def contains(lst, v) returns present:
let before, after = _find(lst, v):
present = after->value == (0, v)
release(?after->lock)
release(?before->lock)

Systematic

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Systematic Testing

* Sequential case
o try all “sequences” of 1 operation

— put or get (in case of queue)
o try all sequences of 2 operations

- put+put, put+get, get+put, get+get, ...

o try all sequences of 3 operations

O ...

* How do you know if a sequence is correct?

o compare “behaviors” of running test
against implementation with running test
against the sequential specification

Systematic Testing

e Concurrent case

o try a

o try al
| interleavings of 3 operations

o try a
®

| “interleavings” of 1 operation

 interleavings of 2 operations

* How do you know if an interleaving is

correct?

o compare “behaviors” of running test
against concurrent implementation with
running test against the concurrent
specification

How do we capture behaviors?

 And whatis a behavior?

Life of an atomic operation

process invokes operation happens process resumes
operation atomically with result

v v v

u
S

Concurrency and Overlap

Is the following a possible scenario?

s W=

customer X orders a burger
customerY orders a burger (after X)
customerY is served a burger
customer X is served a burger (after)

Concurrency and Overlap

Is the following a possible scenario?
customer X orders a burger
customerY orders a burger (after X)
customerY is served a burger
customer X is served a burger (after)

s W=

We’ve all seen this happen. It’s a matter of
how things get scheduled!

Specification

* One operation: order a burger
o result: a burger (at some later time)

» Semantics: the burger manifests itself

atomically sometime during the operation
o Atomically: no two manifestations overlap

* It’s easier to specify something when you don’t

have to worry about overlap
o i.e.,you can simply give a sequential specification

Implementation?

e Suppose the diner has one small hot plate and two cooks
« Cooks use alock for access to the hot plate
* Possible scenario:

COo0
the
COo0
COo0
COo0
COo0
COo0

BOONOOIR WhHH

customer X orders burger, order ends up with cook 1
customerY orders burger, order ends up with cook 2

K 1 was busy with something else, so cook 2 grabs
lock first

kK 2 cooks burger forY
k 2 releases lock

K 1 grabs lock

K 1 cooks burger for X

customer Y receives burger
0. customer X receives burger

k 1 releases lock

Implementation?

e Suppose the diner has one small hot plate and two cooks
« Cooks use alock for access to the hot plate

* Possible scenario:

customer X orders burger, order ends up with cook 1
customerY orders burger, order ends up with cook 2
cook 1 was busy with something else, so cook 2 grabs
the lock first

cook 2 cooks burger forY
cook 2 releases lock

cook 1 grabs lock

cook 1 cooks burger for X
cook 1 releases lock
customer Y receives burger
0. customer X receives burger

BOONOOIR WhHH

* can't happen if Y orders burger after X receives burger
* but if operations overlap, any ordering can happen... .

Correct Behaviors

put(1)

(1)

get() 2> ?

Correct Behaviors

(1)

put() |

[Iget() =21

Correct Behaviors

put(1) |

get() 2 ?

Correct Behaviors

put(1) |

Correct Behaviors

put(1)
(1) I
[Iget() =21
o) put(1) |
get() I None
(3) put(1)
get() > ???

Correct Behaviors

put(1)
(1)
get() 2 1
) put(1)
get() 2 None
) | G

Correct Behaviors

put(1)
(1)
get() 2 1
) put(1)
get() 2 None
3 | G

Concurrent queue test program

1 | import queue

2

3 | const N_PUT = 2

4 | const N_GET = 2

5 | @ = queue.Queue()

6

7 | def put_test(self):

8 print("call put", self)
9 queue.put(?q, self)

10 print("done put", self)
1l

12 | def get_test(self):

13 print("call get", self)
14 let v = queue.get(?q):
S print("done get", self, v)
16

17 | for 1 in {1..N_PUT}:

18 spawn put_test(i)

19 | for 1 in {1..N_GET}:

20 spawn get_test(i)

Correct behaviors (1 get, 1 put)

"call put", 1]

["done get", 1, None

["done get", 1, 1]

[“call get", 1 ["call put", 1] ["done put", 1]

["Call put", 1] [“Call get", 1] .

["done put", 1]

["done get", 1, None]

["done get", 1,1]
"done get", 1, None

["done put", 1]

["done get", 1,1]

["call get", 1]

S harmony -c N_GET=1 —-c N_PUT=1 code/queue_btest2.hny

Testing: comparing behaviors

$ harmony -o queue.hfa code/queue_btest2.hny
$ harmony -B queue.hfa -m queue=queue_lock code/queue_btest2.hny

* The first command outputs the behavior of
running the test program against the
specification in file queue.hfa

* The second command runs the test program
against the implementation and checks if its
behavior matches that stored in queue.hfa

Black Box Testing

 Not allowed to look under the covers
o can’tuse rw->nreaders, etc.

* Only allowed to invoke the interface methods
and observe behaviors

* Your job: try to find bad behaviors
o compare against a specification
o how would you test a clock? An ATM machine?

- without looking inside

* In general testing cannot ensure correctness
o only a correctness proof can
o testing may or may not expose a bug

o model checking helps expose bugs
169

Conditional
Waiting

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Conditional Waiting

* Thus far we’ve shown how threads can
wait for one another to avoid multiple
threads in the critical section

 Sometimes there are other reasons:
o Wait until queue is non-empty
o Wait until there are no readers (or writer) in
a reader/writer section
O ...

171

Reader/writer lock

ldea: allow multiple read-only operations
to execute concurrently
o Still no data races

o In many cases, reads are much more
frequent than writes

=»Either:

- thus not:
’ mUItlple readers, or * a reader and a writer, nor
* 4 Single Wwriter * multiple writers

Reader/Writer Lock Specification

1 | def RWlock() returns lock:

2 lock = { .nreaders: @, .nwriters: 0 }
3

4 | def read_acquire(rw):

5 atomically when rw->nwriters ==

6 rw->nreaders += 1

/

8 | def read_release(rw):

9 atomically rw->nreaders -= 1

10

11 | def write_acquire(rw):

12 atomically when (rw->nreaders == @) and (rw->nwriters == 0):
13 rw->nwriters = 1

14

15 | def write_release(rw):

16 atomically rw->nwriters = 0

Reader/Writer Lock Specification

1 | def RWlock() returns lock:

2 lock = { .nreaders: @, .nwriters: 0 }

3

4 | def read_acquire(rw):

5 atomically when rw->nwriters ==

6 rw->nreaders += 1

/

8 | def read_release(rw):

9 atomically rw->nreaders -= 1

10

11 | def write_acquire(rw):

12 atomically when (rw->nreaders == @) and (rw->nwriters == 0):

13 rw->nwriters = 1

14

15 | def write_release(rw):

16 atomically rw->nwriters = 0
Invariants:

e 1f n readers in the R/W critical section, then nreaders = n
e 1f n writers in the R/W critical section, then nwriters > n
* (nreaders = 0 Anwriters = 0) V (nreaders = 0 A0 < nwriters < 1) .

R/W Locks: test for mutual exclusion

1 | import rwlock

2

3 | nreaders = nwriters = 0

4 | invariant ((nreaders >= @) and (nwriters == 0)) or

5 (Cnreaders == @) and (nwriters == 1))

6

7 | const NOPS = 4

8

9 | rw = rwlock.RWlock()

10

11 | def thread():

12 while choose({ False, True }):

13 if choose({ "read", "write" }) == "read":

14 rwlock.read_acquire(?rw)

15 atomically nreaders += 1 .

16 ol e no erter, one or more readers
17 rwlock.read_release(?rw)

18 else: # write

19 rwlock.write_acquire(?rw)

20 atomically nwriters += 1 .
21 atomically nwriters -= 1 one writer, no ICELEIS
22 rwlock.write_release(?rw)

ZS

24 | for 1 in {1..NOPS}:

25 spawn thread()

Cheating R/W lock implementation

1 | import synch The lock protects the
2 application’s critical section
3 | def RWlock() returns lock:

4 lock = synch.Lock()

5

6 | def read_acquire(rw):

14 synch.acquire(rw)

8

9 | def read_release(rw):

10 synch.release(rw)

11

12 | def write_acquire(rw):

13 synch.acquire(rw)

14

15 | def write_release(rw):

16 synch.release(rw)

Cheating R/W lock implementation

O oo ~NOULL B WIN BP-

e el el =
S WINNEEPS

The lock protects the

import synch TR e .
application’s critical section

def RWlock() returns lock:
lock = synch.Lock()

Allows only one reader to get

def read_acquire(rw): the lock at o time

synch.acquire(rw)

def 4 rel . Does not have the same
8 e rslense behavior as the specification
synch.release(rw) * 1t 1s missing behaviors

* 1o bad behaviors though
def write_acquire(rw):

synch.acquire(rw)

def write_release(rw):
synch.release(rw)

Busy Waiting Implementation

1 | from synch import Lock, acquire, release
2

3 | def RWlock() returns lock:

4 lock = { .lock: Lock(), .nreaders: @, .nwriters: 0 }
5

6 | def read_acquire(rw):

7 acquire(?rw->lock)

8 while rw->nwriters > 0:

9 release(?rw->1lock)

10 acquire(?rw->lock)

11 rw->nreaders += 1

12 release(?rw->lock)

13

14 | def read_release(rw):

15 acquire(?rw->lock)

16 rw->nreaders -= 1

17 release(?rw->lock)

18

19 | def write_acquire(rw):

20 acquire(?rw->lock)

21 while rw->nreaders > @ or rw->nwriters > 0:
22 release(?rw->1lock)

23 acquire(?rw->lock)

24 rw->nwriters = 1

25 release(?rw->1lock)

26

27 | def write_release(rw):

28 acquire(?rw->lock)

29 rw->nwriters = 0

30 release(?rw->lock)

Busy Waiting Implementation

1 | from synch import Lock, acquire, release

2

3 | def RWlock() returns lock: The lOCk pI'OtGC'[S nreaders
4 lock = .lock: Lock(), .nreaders: @, .nwriters: 0 .

5 { N " and nwriters, not the
6 | def read_acquire(rw): o, .
e critical section of the
8 while rw->nwriters > 0: : :

9 release(?rw->1lock) apphcathn

10 acquire(?rw->lock)

11 rw->nreaders += 1

12 release(?rw->lock)

13

14 | def read_release(rw):

15 acquire(?rw->lock)

16 rw->nreaders -= 1

17 release(?rw->lock)

18

19 | def write_acquire(rw):

20 acquire(?rw->lock)

21 while rw->nreaders > @ or rw->nwriters > 0:

22 release(?rw->1lock)

23 acquire(?rw->lock)

24 rw->nwriters = 1

25 release(?rw->1lock)

26

27 | def write_release(rw):

28 acquire(?rw->lock)

29 rw->nwriters = 0

30 release(?rw->lock)

Busy Waiting Implementation

1 | from synch import Lock, acquire, release

2

3 | def RWlock() returns lock:

4 lock = { .lock: Lock(), .nreaders: @, .nwriters: 0 }
5

6 | def read_acquire(rw):

7 acquire(?rw->lock)

8 while rw->nwriters > 0:

9 release(?rw->1lock)

10 acquire(?rw->lock)

11 rw->nreaders += 1

12 release(?rw->lock)

13

14 | def read_release(rw):

15 acquire(?rw->lock)

| e waiting conditions
17 release(?rw->lock)

18

19 | def write_acquire(rw):

20 acquire(?rw->lock)

21 while rw->nreaders > @ or rw->nwriters > 0:
22 release(?rw->1lock)

23 acquire(?rw->lock)

24 rw->nwriters = 1

25 release(?rw->1lock)

26

27 | def write_release(rw):

28 acquire(?rw->lock)

29 rw->nwriters = 0

30 release(?rw->lock)

Busy Waiting Implementation

1 | from synch import Lock, acquire, release

2

3 | def RWlock() returns lock:

4 lock = { .lock: Lock(), .nreaders: @, .nwriters: 0 }

5

6 | def read_acquire(rw):

7 acquire(?rw->lock)

8 while rw->nwriters > 0:

9 release(?rw->1lock)

10 acquire(?rw->lock)

11 rw->nreaders += 1 .

12 release(?rw->Llock) Good: has the same behaviors as
13 . .

14 | def read_release(rw): the lmplementlon

15 acquire(?rw->lock)

16 rw->nreaders -= 1 . .

17 FeTeasatirn>Toc Bad: process is continuously

= . . scheduled to try to get the lock
19 | def write_acquire(rw): L. .

20 acquire(?rw->lock) cven lf lt,S not avallable

2k while rw->nreaders > @ or rw->nwriters > 0:

22 release(?rw->1lock)

23 acquire(?rw->lock) (Harmony complains about this
24 rw->nwriters = 1

25 release(?rw->1lock) as WelD

26

27 | def write_release(rw):

28 acquire(?rw->lock)

29 rw->nwriters = 0

30 release(?rw->lock)

Mesa Condition Variables

* Alock can have one or more condition variables

* Athread that holds the lock but wants to wait
for some condition to hold can temporarily
release the lock by waiting on some condition
variable

* Associate a condition variable with each
“waiting condition”
o reader: no writer in the critical section
o writer: no readers nor writers in the c.s.

Mesa Condition Variables, cont’d

* When a thread that holc
that some waiting cond

s the lock notices

ition is satisfied it

should notify the corres
condition variable

oonding

R/W lock with Mesa condition variables

from synch import *

def RWlock() returns lock:
lock = <
.nreaders: @, .nwriters: 0, .mutex: Lock(),
.r_cond: Condition(), .w_cond: Condition()

L] L]

r_cond: used by readers to wait on nwriters ==
w_cond: used by writers to wait on nreaders == 0 == nwriters

~NOoOO U B WN

R/W Lock, reader part

10
1
12
13
14
15
16
17
18
19
20
Zl

def

def

read_acquire(rw):

acquire(?rw->mutex)

while rw->nwriters > 0:
wait(?rw->r_cond, ?7rw->mutex)

rw->nreaders += 1

release(?rw->mutex)

read_release(rw):

acquire(?rw->mutex)

rw->nreaders -= 1

1f rw->nreaders ==
notify(?rw->w_cond)

release(?rw->mutex)

R/W Lock, reader part

9 | def read_acquire(rw):

10 acauire(?rw->mutex)

11 w->nwriters > 0: similar to
12 wait(?rw->r_cond, ?rw->mutex) busy waiting
13 rw->nreaders += 1

14 release(?rw->mutex)

15

16 | def read_release(rw):

17 acquire(?rw->mutex)

18 rw->nreaders -= 1

19 1f rw->nreaders ==

20 notify(?rw->w_cond)

21 release(?rw->mutex)

R/W Lock, reader part

9 | def read_acquire(rw):

10 acauire(?rw->mutex)

11 w->nwriters > 0: similar to

12 wait(?rw->r_cond, ?rw->mutex) busy waiting
13 rw->nreaders += 1

14 release(?rw->mutex)

15

16 | def read_release(rw):

17 acquire(?rw->mutex)

18 rw->nreaders -= 1

19 if rw->nreaders == .
20 notify(?rw->w_cond) } but need this
21 release(?rw->mutex)

R/W Lock, reader part

10
11
12
13
14
15
16
17
18
1
20
21

def

read_acquire(rw):

acauire(?rw->mutex)
w->nwr'iter's >80 j|_mm11ar to

def

wai ->r_cond, ?rw->mutex) busy waiting

rw->nreade

Always use while
read_ Never just if (or nothing)
acqui wait without while is
rW->n called a “naked wait”
notify(?rw->w_cond) but need this
release(?rw->mutex)

R/W Lock, reader part

compare with busy waiting

def

def

read_acquire(rw):
acquire(?rw->lock)

while rw->nwriters > 0:

release(?rw->lock)

acquire(?rw->lock)
rw->nreaders += 1
release(?rw->lock)

read_release(rw):
acquire(?rw->lock)
rw->nreaders -= 1
release(?rw->lock)

def

def

read_acquire(rw):

acquire(?rw->mutex)

while rw->nwriters > 0:
wait(?rw->r_cond, ?rw->mutex)

rw->nreaders += 1

release(?rw->mutex)

read_release(rw):

acquire(?rw->mutex)

rw->nreaders -= 1

if rw->nreaders == 0:
notify(?rw->w_cond)

release(?rw->mutex)

R/W Lock, reader part

compare with busy waiting

def

aeguire(?2rw->lock)
w—>nwr'iter's > 0:
elease(?rw->lock)

def

read_acquire(rw):

acquire(?rw->lock)
rw->nreaders += 1
release(?rw->lock)

read_release(rw):
acquire(?rw->lock)
rw->nreaders -= 1
release(?rw->lock)

def

read_acquire(rw):

gequre(7rw->mutex)
@ ->nwriters > 0:
fait(?rw->r_cond, ?rw->mutex)

def

rw->nreaders += 1
release(?rw->mutex)

read_release(rw):

acquire(?rw->mutex)

rw->nreaders -= 1

if rw->nreaders == 0:
notify(?rw->w_cond)

release(?rw->mutex)

R/W Lock, writer part

23 | def write_acquire(rw):

24 acguire(?rw->mutex)

25 r'w->nr'eader's > @ or rw->nwriters > 0:
26 wait(?rw->w_cond, ?rw->mutex)

27 rw->nwriters = 1

28 release(?rw->mutex)

29

30 | def write_release(rw):

31 acquire(?rw->mutex)

32 rw->nwriters = 0

33 notify_all(?rw->r_cond) ,

34 notifz(?r'w»w_cond) } don’t forget anybody!
35 release(?rw->mutex)

Condition Variable interface

» wait(cv, lock)
o may only be called while holding lock
o temporarily releases lock

- but re-acquires it before resuming
o if cv not notified, may block indefinitely

— but wait() may resume ”on its own”
* notify(cv)
o no-op if nobody is waiting on cv
o otherwise wakes up at least one thread waiting on cv
* notify_all(cv)
o wakes up all threads currently waiting on cv

Busy Waiting or?

def test_and_set(s) returns oldvalue:
atomically:
oldvalue = !s
Is = True

def atomic_store(p, Vv):
atomically !p = v

def Lock() returns initvalue:
initvalue = False

def acquire(lk):
while test_and_set(lk):
pass

def release(lk):
atomic_store(lk, False)

def read_acquire(rw):

def

acquire(?rw->lock)
while rw->nwriters > 0:
release(?rw->lock)
acquire(?rw->lock)
rw->nreaders += 1
release(?rw->lock)

read_release(rw):
acquire(?rw->lock)
rw->nreaders -= 1
release(?rw->lock)

Busy Waiting or?

def test_and_set(s) returns oldvalue:

atomically:
oldvalue = !s def read_acquire(rw):
Is = True acquire(?rw->lock)

while rw->nwriters > 0:

def atomic_store(p, Vv):

: release(?rw->lock)
atomically !p = v

acquire(?rw->lock)
rw->nreaders += 1

def Lock() returns initvalue:
O release(?rw->lock)

initvalue = False

def acquire(lk): def read_release(rw):
while test_and_set(1lk) acquire(?rw->lock)
pass rw->nreaders -= 1

release(?rw->lock)
def release(lk):

atomic_store(lk, False)

Busy Waiting or?

def test_and_set(s) returns oldvalue:
atomically:
oldvalue = !s
Is = True

def atomic_store(p, Vv):
atomically !p = v

def Lock() returns initvalue:
initvalue = False

def acquire(lk):
while test_and_set(lk)
pass

def release(lk):
atomic_store(lk, False)

def

read_acquire(rw):
acquire(?rw->lock)

while rw->nwriters > 0:

def

release(?rw->lock)

acquire(?rw->lock)
rw->nreaders += 1
release(?rw->lock)

read_release(rw):
acquire(?rw->lock)
rw->nreaders -= 1
release(?rw->lock)

State unchanged while condition does State conditionally changes while condition does

not hold. This thread only “observes” not hold. This thread actively changes the state
until the condition hold

the state until condition holds

Busy Waiting or?

def test_and_set(s) returns oldvalue:
atomically:
oldvalue = !s
Is = True

def atomic_store(p, Vv):
atomically !p = v

def Lock() returns initvalue:
initvalue = False

def acquire(lk):
while test_and_set(lk)
pass

def release(lk):
atomic_store(lk, False)

State unchanged while condition does
not hold. This thread only “observes”
the state until condition holds

def read_acquire(rw):

acquire(?rw->lock)

while rw->nwriters > 0:
release(?rw->lock)

acquire(?rw->lock)
rw->nreaders += 1 o %
release(?rw->1 c@%‘
def read_re e@:
ac@ﬁirw»lock)
ers -=1
‘<§§%> lease(?rw->lock)

State conditionally changes while condition does
not hold. This thread actively changes the state

until the condition hold

Why is busy waiting bad?

* Consider a timesharing setting

Threads T1 and T2 take turns on the CPU
o switch every 100 milliseconds

Suppose T1 has a write lock and is running
Now suppose a clock interrupt occurs, T2 starts running and
tries to acquire a read lock
Non-busy-waiting acquisition:
o T2is putonawaiting queue and T1 resumes immediately and
runs until T1 releases the write lock
— which puts T2 back on the run queue
Busy-waiting acquisition:
o T2 keeps running (wasting CPU) until the next clock interrupt
o T1and T2 switch back and forth every 100 ms until T1 releases

the write lock

Busy Waiting vs Condition Variables

Busy Waiting Condition Variables

Use a lock and a loop Use a lock and a collection of
condition variables and a loop

Easy to write the code Notifying is tricky

Easy to understand the code Easy to understand the code

Progress property is easy Progress requires careful

consideration (both for correctness
and efficiency)

Ok-ish for true multi-core, but bad Good for both multi-core and
for virtual threads virtual threading

Just Say No to Busy Waiting

Why no naked waits? (reason 1)

A naked wait 1s a wait() without while around it

By the time waiter gets the lock back,

condition may no longer hold
o E.g., given three threads: W1, R2, W3
o W1 enters as a writer
o R2 waits as a reader
o W1 leaves, notifying R2
o W3 enters as a writer
o R2 wakes up

- If R2 doesn’t check condition again, R2 and W3
would both be in the critical section

Why no naked waits? (reason 2)

» When notitying, be safe rather than sorry
o it’s better to notify too many threads than
too few
o in case of doubt, use notify_all() instead of
just notify()
* Over-notitying can lead to some threads
waking up when their condition is no

longer satisfied

Why no naked waits? (reason 3)

* Because you should use while around wait,
many condition variable implementations allow

“spurious wakeups”

o wait() resumes even though condition variable was
not notified

o simplifies implementation of wait()

Just Say No to Naked Waits

Hints for reducing unneeded wakeups

» Use separate condition variables for each
waiting condition

* Don’t use notify_all when notify suffices
o but be safe rather than sorry

* You can use N calls to notify if you know
at most N nodes can continue after a
waiting condition holds

204

Deadlock

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Deadlock example

1 | from synch import Lock, acquire, release

2

3 | def Account(balance) returns account:

4 account = { .lock: Lock(), .balance: balance }
5

6 | accounts = | Account(3), Account(7), Account(0) |
V4

8 | def transfer(al, a2, amount):

9 acquire(?accounts|al].lock) What could £0 Wrong?
10 1f amount <= accounts|al]|.balance:

11 accounts|al|.balance -= amount

12 acquire(?accounts/ a2 .lock)

13 accounts|aZ | .balance += amount

14 release(?accounts|a2].lock)

15 release(?accounts|al]|.lock)

16

17 | spawn transfer(0, 1, 1)

18 | spawn transfer(l, 0, 2)

Harmony output

Summary: some execution cannot terminate
* Schedule thread TO: init()
Line 6: Set accounts to [{ "balance": 3, "lock": False }, { "balance": 7, "lock": False }]
* Schedule thread T1: transfer(0, 1, 1)
Line synch/36: Set accounts[0]["lock"] to True (was False)
Line 11: Set accounts[0]["balance"] to 2 (was 3)
Preempted in transfer(0, 1, 1) --> acquire(?accounts[1]["lock"])
* Schedule thread T2: transfer(1, 0, 2)
Line synch/36: Set accounts|1]["lock"] to True (was False)
Line 11: Set accounts[1]["balance"] to 5 (was 7)
Preempted in transfer(1, 0, 2) --> acquire(?accounts[0]["lock"])
Final state (all threads have terminated or are blocked):
Threads:
T1: (blocked) transfer(0, 1, 1) --> acquire(?accounts|1]["lock"])
T2: (blocked) transfer(1, 0, 2) --> acquire(?accounts[0]["lock"])
Variables:
accounts: [{ "balance": 2, "lock": True }, { "balance": 5, "lock": True } |

Harmony HTML Output

Issue: Non-terminating state Shared Variables
Turn Thread Instructions Executed PC accounts
CRE R
1 [TO: __init_ () ar - 1309([{ "balance": 3, "lock": False }, { "balance": 7, "lock": False }]

terminated

2 [T1: transfer(0, 1, 1)

Eﬂﬂ 949 |[{ "balance": 2, "lock": True }, { "balance": 7, "lock": False }]

about to execute in synch:35: atomically when not !binsema:

3 [T2: transfer(1, 0, 2)

H:H:H:- 949 | [{ "balance": 2, "lock": True }, { "balance": 5, "lock": True }]

about to execute in synch:35: atomically when not !binsema:

synch:34 def acquire(binsema):

934 |LoadVar binsema Threads
935 |DelVar binsema ID| Status Stack Trace Stack Top
936 [Load TO|terminated |
937 |Store Var result al: 0,a2: 1, amount: 1
T1| blocked - :
938 [ReturnOp(result) acquire(?accounts[1]["lock"])[binsema: ?accounts[1]["lock"]
939 Jump 1214 : 12| blocked . : : a.l: 1, a2: 0, amount: 2 i i
940 |[Frame held(binsema) acquire(?accounts[0]["lock"])|binsema: ?accounts[0]["lock"]

208

Deadlock vs Starvation

 Starvation: some processes can run in
theory, but the scheduler continually
selects other processes to run first. Tied
to fairness in scheduling.

» Deadlock: no process can run because all
are waiting for another process to
change the state. The scheduler can’t
help you now.

Deadlock vs Livelock

* Livelock: some processes continually
change their state but don’t make
progress (like polite people trying to pass
one anotherin a narrow hallway). The
scheduler could fix this in theory.

» Deadlock: no process can run because all
are waiting for another process to
change the state. The scheduler can’t
help you now.

System Model

* Collection of resources and threads
o Examples of resources: I/0 devices, GPUs, locks, buffers, slots
in a buffer, ...

* Exclusive access
o Only one thread can use aresource at a time
o Protocol:
1. Thread acquires resource
* thread is blocked until resource is free
2. Thread holds the resource
* resourceis allocated (not free) at this time

3. Thread releases the resource

Necessary Conditions for Deadlock

. Edward Coffman 1971
1. Mutual Exclusion

e acquire() can block invoker until resource is free

2. Hold & wait

e A thread can be blocked while holding resources

3. No preemption
o Allocated resources cannot be reclaimed

4. Circular wait
® Let T; = T, denote “T; waits for T; to release a resource”.

O Then 3T, ...T,: T, 2T, 2 ...2T,2 T,

Example: Mutual Exclusion

1 | from synch import Lock, acquire, release

2

3 | def Account(balance) returns account:

4 account = { .lock: Lock(), .balance: balance }

5

6 | accounts = | Account(3), Account(7), Account(0) |

7

8 | def transfer(al, a2, amount): y

9 acquire(?accounts|[al].lock) Mutual exclusion
10 1f amount <= accounts|al]|.balance:

11 accounts|al|.balance -= amount p

12 acquire(?accounts|[a2].lock)
13 accounts|aZ2 | .balance += amount

14 release(?accounts|a2].lock)

15 release(?accounts|al]|.lock)

16

17 | spawn transfer(0, 1, 1)

18 | spawn transfer(l, 0, 2)

Example: Hold & Wait

1 | from synch import Lock, acquire, release

2

3 | def Account(balance) returns account:

4 account = { .lock: Lock(), .balance: balance }

5

6 | accounts = | Account(3), Account(7), Account(0) |

7

8 | def transfer(al, a2, amount):

9 acquire(?accounts|al].lock) y

T p————cy
11 accounts|al|.balance -= amount p

12 acquire(?accounts|[a2].lock)
13 accounts|aZ2 | .balance += amount

14 release(?accounts|a2].lock)

15 release(?accounts|al]|.lock)

16

17 | spawn transfer(0, 1, 1)

18 | spawn transfer(l, 0, 2)

Example: No Preemption

1 | from synch import Lock, acquire, release

2

3 | def Account(balance) returns account:

4 account = { .lock: Lock(), .balance: balance }
5

6 | accounts = | Account(3), Account(7), Account(0) |
7

8 | def transfer(al, a2, amount):

9 acquire(?accounts|al].lock)

10 1f amount <= accounts|al]|.balance:

11 accounts|al|.balance -= amount

12 acquire(?accounts|a2]|.lock)

13 accounts|aZ2]|.balance += amount

14 release(?accounts| a2 |.lock)

15 release(?accounts|al]|.lock) On older can release loc
16

17 | spawn transfer(0, 1, 1)

18 | spawn transfer(l, 0, 2)

Example: Circular Wait

1 | from synch import Lock, acquire, release

2

3 | def Account(balance) returns account:

4 account = { .lock: Lock(), .balance: balance }
5

6 | accounts = | Account(3), Account(7), Account(0) |
7

8 | def transfer(al, a2, amount):

9 acquire(?accounts|al].lock)

10 1f amount <= accounts|al]|.balance:

11 accounts|al|.balance -= amount

12 acquire(?accounts|a2]|.lock)

13 accounts|aZ2]|.balance += amount

14 release(?accounts|a2].lock)

15 release(?accounts|al]|.lock)

16

17 | spawn transfer(0, 1, 1)

18 | spawn transfer(l, 0, 2)

Three ways to deal with deadlock

Prevention: Programmer ensures that at least
one of the necessary conditions cannot hold

Avoidance: Scheduler avoids deadlock scenarios
(e.g., by executing each thread to completion)

Detect and Recover: Allow deadlocks to happen.
Detect them and recover in some way

Deadlock
Prevention

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Negate one of the following:

1. Mutual Exclusion
2. Hold & wait

3. No preemption
4. Circular wait

1. Negate Mutual Exclusion

o Make resources sharable without locks

- Non-blocking concurrent data structures

* See Harmony book for examples
o Have sufficient resources available so

acquire() never blocks

- bounded buffer: make sure it is large enough

« Doesn’t work for locks, as there is only one per
critical section

2. Negate Hold & Wait

1 | from synch import Lock, acquire, release

2

3 | def Account(balance) returns account:

4 account = { .lock: Lock(), .balance: balance }

5

6 | accounts = | Account(3), Account(7) |

7

8 | def transfer(al, a2, amount):

9 acquire(?accounts/al].lock)

10 1f amount <= accounts|/al]|.balance:

11 accounts|al|.balance -= amount

12 release(?accounts[al].lock) Release resource
13 acquire(?accounts|az].lock) before acquiring another
14 accounts| a2 | .balance += amount

15 release(?accounts|az2|.lock)

16 else:

17 release(?accounts/al|.lock)

18

19 | spawn transfer(0, 1, 1)

20 | spawn transfer(l, 0, 2)

2: Negate Hold & Wait, badly

1 | from synch import Lock, acquire, release

2

3 | def Account(balance) returns account:

4 account = { .lock: Lock(), .balance: balance }

5

6 | accounts = | Account(3), Account(7) |

7/

8 | invariant all(a.balance >= @ for a in accounts)

9

10 | def transfer(al, a2, amount):

11 acquire(?accounts/al]l.lock) . .
12 var funds_available = amount <= accounts|/al]|.balance [ChGCk if funds arc avallable
13 release(?accounts|al].lock)

14 i1f funds_available:

15 acquire(?accounts/al]l.lock) .

16 accounts|/al|.balance -= amount [Wl'[hdraW funds from al
17 release(?accounts/al].lock)

18 acquire(?accounts|az2].lock))

19 accounts|az | .balance += amount : dep051t funds for a2

20 release(?accounts|az2|.lock)

21

22 | spawn transfer(Q, 1, 2) 9

23 | spawn transfer(Q, 1, 2) What COUld gO WI'Ol'lg.

2. Negate Hold & Wait, alternate

1 | def Lock() returns lock:

2 lock = False

3

4 | def acquire2(lkl, 1k2): . .

5 atomically when not (!1k1 or !1k2): SpeC- Ach|re tWO IOCkS
6 11kl = !'1k2 = True

14

8 | def release(lk):

9 atomically !lk = False

10

11 | def Account(balance) returns account:

12 account = { .lock: Lock(), .balance: balance }

13

14 | accounts = | Account(3), Account(7) |

15

16 | def transfer(al, a2, amount): .

17 acquire2(?accounts|[al].lock, ?accounts|[a2].lock) ACC]UII'G resou.rces at
18 if amount <= accounts|/al] .balance: the same time
19 accounts|al].balance -= amount

20 accounts|az | .balance += amount

21 release(?accounts|/al].lock)

22 release(?accounts|/a2]| .lock)

23

24 | spawn transfer(@, 1, 1)

25 | spawn transfer(l, 0, 2)

3. Allow Preemption

* Time-multiplexing of resources

o threads: context switching

O memory: paging
* Database transactions

o 2-phase locking + transaction abort and retry
* Not available for locks

4: Negate circular wait

e Define a total order on resources

* Rule: athread cannot acquire a resource that is
“lower” than a resource already held
* Either:

o athread is careful to acquire resources that it needs
in order, or

o athread that wants to acquire a resource R must first
release all resources that are lower than R

Why does resource ordering work?

Theorem: Resource ordering prevents circular wait
Proof by contradiction:

* Assume circular wait exists

c 3T, ...T,: T, 2T, 2 ...2T,2T;

* T.holds R,
* T;requestsR;heldbyT; (j = (i + 1) mod n)
* Resource ordering: R; <R,, ..., R. ;<R ,R <R,

* R, <R, (by transitivity of total order)
* Violates irreflexivity of total order

4: Negate circular wait

1 | from synch import Lock, acquire, release

2

3 | def Account(balance) returns account:

4 account = { .lock: Lock(), .balance: balance *}

5

6 | accounts = | Account(3), Account(7) |

V4

8 | def transfer(al, a2, amount): :

9 acquire(?accounts minCal, a2)].lock) Acqw_re resources
10 acquire(?accounts|[max(al, a2)].lock) in order
11 1f amount <= accounts|/al|.balance:

12 accounts| al|.balance -= amount

13 accounts| a2 .balance += amount

14 release(?accounts|/al|.lock)

15 release(?accounts|a2|.lock)

16

17 | spawn transfer(@, 1, 1)

18

spawn transfer(l, 0, 2) .

Deadlock
Avoidance

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Deadlock in traffic

How can these be avoided?

Deadlock Avoidance

* Scheduler carefully schedules threads so
deadlock cannot occur
* For example, it might allow only one thread

to run at a time, to completion
o This is extreme: no concurrency
o Doesn’t work with conditional waiting

* Better solutions typically require that the
scheduler has some abstract knowledge of what
the threads are trying to accomplish

230

Safe States

* Astateis an allocation of resources to threads
* The state changes each time a thread allocates or
releases a resource
» Asafe stateis a state from which an execution exists
that does not cause deadlock
* Notes:
o theinitial state is safe: threads can be scheduled one
at a time and run to completion
o an unsafe state is not necessarily deadlocked, but
deadlock is unavoidable eventually
o deadlock may be possible from a safe state, butitis
avoidable through careful scheduling

Deadlock Avoidance

» Scheduler should only allow safe states

to happen in an execution

o When a thread tries to acquire() a resource,
the scheduler should block the thread, if
acquiring the resource leads to an unsafe
state, until this is no longer the case

o release() is always ok

Deadlock Avoidance

O 0o NOoOYUT D WDN -

P PR R EPRRERP R
O NO Ul WNREOS

from synch import Lock, acquire, release

def Account(balance) returns account:
account = { .lock: Lock(), .balance: balance }

accounts . Account(3), Account(7), Account(0) |

def transfer(al, a2, amount):

acquire(?accounts|al].lock)

1f amount <= accounts|al]|.balance:
accounts|al|.balance -= amount
acquire(?accounts|a2]|.lock)
accounts| a2 | .balance += amount
release(?accounts|a2].lock)

release(?accounts|al]|.lock)

spawn transfer(0, 1, 1)
spawn transfer(l, 0, 2)

How

(?

Deadlock Avoidance

O o N OYUTL A WIN B

P PR R EPRRERP R
O NO Ul WNREOS

from synch import Lock, acquire, release

def Account(balance) returns account:

account = { .lock: Lock(), .balance: balance }

accounts

def transfer(al, a2, amount):

acquire(?accounts|al].lock)

1f amount <= accounts|al]|.balance:
accounts|al|.balance -= amount
acquire(?accounts/ a2 .lock)
accounts| a2 | .balance += amount
release(?accounts| a2 |.lock)

release(?accounts|al]|.lock)

spawn transfer(0, 1, 1)
spawn transfer(l, 0, 2)

. Account(3), Account(7), Account(0) |

For example, don’t schedule
two threads transfer(al, a2)

and transfer(a3, a4) at the

same time unless
{al,a2}n{a3,a4} = @

Avoidance specified in Harmony

1 | from synch import Lock, acquire, release

2

3 | def Account(balance) returns account:

4 account = { .lock: Lock(), .balance: balance }

Z active = {} } keep track of Wl’.liCh

/ | accounts = | Account(3), Account(7) | accounts are active

8

9 | def transfer(al, a2, amount): . i
10 atomically when ({ al, a2 } & active) = {}: enforce no intersection
11 active |= { al, a2 } with active transfers
12

13 acquire(?accounts/al].lock)

14 1f amount <= accounts|al]|.balance:

15 accounts|al|.balance -= amount

16 acquire(?accounts/a2].lock)

17 accounts| a2 |.balance += amount

18 release(?accounts|a2|.lock)

19 release(?accounts|al|.lock)

20

- O update scheduler state
L active -= { al, a2 } .

Deadlock
Detection and
Recovery

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

Deadlock Detection

» Keep track of allocation of resources to
threads

Resources

Threads

Deadlock Detection

» Keep track of allocation of resources to
threads
» Keep track of which threads are trying to

acquire which resource
Threads

Resources

—

Deadlock Detection

* Known as the Resource Allocation Graph
* Deadlock = cycle in the graph

Resources

Threads

S

Deadlock Detection

* Known as the Resource Allocation Graph
* Deadlock = cycle in the graph

Resources

Threads

Finding Cycles

* Graph Reduction Algorithm:
o While there are nodes with no outgoing edges
— select one such node

- remove node and its incoming edges

o If the resulting graph empty (no nodes), then
no cycles

o No cycles = No deadlock

241

Deadlock Detection

Resources

Threads

=

Deadlock Detection

Resources
Threads

Deadlock Detection

Resources

Threads

Deadlock Detection

Resources

Threads

@

Deadlock Detection

Resources

Threads

Deadlock Detection

No more nodes can be removed, but graph is non-empty =
cycle is present

Resources

Threads

Deadlock Detection

* Deadlock detection is expensive

* When to run graph reduction?
o When a resource request cannot be granted?
o When a thread has been blocked for a certain
amount of time?
o Periodically?

Deadlock Recovery Strategies

* Blue screen and reboot
o Can lose data/ results of long computations
* Deny arequest to remove cycle
o Programmer responsible for exception
 Kill processes until cycle is gone
o Can lose data/ results of long computations
o Select processes that have been running shortest
amount of time
 Use transactions to access resources

o Abort and retry transaction if deadlock exists
o Requires roll-back or versioning of state

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

[Robbert van Renesse]

Actor Model

* An actor is a type of process
* Each actor has an incoming message queue
* No other shared state

» Actors communicate by “message passing”
o placing messages on message queues

* Supports modular concurrent programs
» Actors and message queues are abstractions

Mutual Exclusion with Actors

e Data structure owned by a “server actor”

* Client actors can send request messages to the server and receive response
messages if necessary

 Server actor awaits requests on its queue and executes one request at a time

>

o Mutual Exclusion (one request at a time)
o Progress (requests eventually dget to the head of the queue)
o Fairness (requests are handled in FCFS order)

Conditional Critical Sections with Actors

* An actor can “wait” for a condition by
waiting for a specific message

* An actor can “notify” another actor by
sending it a message

Parallel processing with Actors

* Organize program with a Manager Actor and a collection of
Worker Actors

* Manager Actor sends work requests to the Worker Actors

» Worker Actors send completion requests to the Manager Actor

/

—> head =

s

(00

Parallel processing example

1 | from synch import *

2

3 | ranges = { (2,10), (11,20), (21,30) }

4 | queues = { r:Queue() for r in ranges }

5 | maing = Queue()

6

7 | def isPrime(v) returns prime:

8 prime = True

9 var d = 2

10 while prime and (d < v):

11 if (v % d) == 0:

12 prime = False

13 d +=1

14

15 | def worker(q):

16 while True:

17 let rq, (start, finish) = get(q):
18 for p in { start .. finish }:
19 if isPrime(p):

20 put(rq, p)

21

22 | def mainCrq, workers):

23 for r:q in workers:

24 put(q, (rq, r))

25 while True:

26 print get(rq)

27

28 | for r in ranges:

29 spawn eternal worker(?queues|[r])

30 | spawn eternal main(?mainqg, { r:?queues|[r] for r in ranges })

Pipeline Parallelism with Actors

 Organize program as a chain of actors

* Forexample, REST/HTTP server
o Network receive actor > HTTP parser actor
—> REST request actor = Application actor
—> REST response actor = HTTP response
actor = Network send actor

automatic flow control (when actors run at different rates)
* with bounded buffer queues .

Pipelining Example

1 | from synch import *

2

3 | const MAX = 10

4

5 | def isPrime(v) returns prime:
6 prime = True

7 VRS cR=I87

8 while prime and (d < v):
9 if (v¥% d) == 0:

10 prime = False

11 d +=1

12

13 | g1 = g2 = g3 = Queue()

14

15 | def actor@():

16 for v in {2. .MAX}:

17 put(?ql, v)

Find Mersenne primes

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

def actorl():
while True:
let v = get(?ql):
put(?q2, (2 ** v) - 1)

def actor2():
while True:
let v = get(?q2):
if isPrime(v):
put(?q3, v)

def actor3():
while True:
let v = get(?q3):
print(v)

spawn actor@()

spawn eternal actorl()
spawn eternal actor2()
spawn eternal actor3()

Support for actors in programming
languages

* Native supportin languages such as
Scala and Erlang

* "blocking queues” in Python, Harmony,
Java

 Actor support libraries for Java, C, ...

Actors also nicely generalize to distributed
systems!

Actor disadvantages?

* Doesn’t work well for “fine-grained”

synchronization
o overhead of message passing much higher
than lock/unlock

» Sending/receiving messages just to
access a data structure leads to
significant extra code

259

Barrier

Nronization

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

260

Barrier Synchronization: the opposite
of mutual exclusion...

» Set of processes run in rounds
* Must all complete a round before starting the next
* Popularinsimulation, HPC, graph processing, model

checking...

o Lock-based synchronization reduces opportunities for
parallelism

o Barrier Synchronization supports scalable parallelism

Barrier abstraction

* Barrier(N): barrier for N threads
* bwait(): start the next round

flemington = -
12injw 9’87654 3 2 1 M

i K £
- Y - ™
» ’ .

Example: dot product

1 | import barrier

2

3 | const NWORKERS = 2

4

5 vecl =1, 2, 3, 4]

6 vec2 =[5, 6,7, 8]

7/ | barr = barrier.Barrier(NWORKERS)

& | output = | @, | * NWORKERS

9

10 | def split(self, v) returns x:

11 x = (self * len(Cv)) / NWORKERS
12

13 | def dotproduct(self, v1, v2):

14 assert len(vl) == len(v2)

15 var total = 0

16 for 1 in { split(self, v1) .. split(self + 1, vl) - 1}:
17 total += v1[i] * v2[i]

18 output|/self] = total

19 barrier.bwait(?barr)

20 print sum(output)

21

22 | for 1 in { @ .. NWORKERS - 1 }:

23 spawn dotproduct(i, vecl, vec2)

Test program for barriers

1 | import barrier

2

3 | const NTHREADS = 3

4| const NROUNDS = 4

5

6 | barr = barrier.Barrier(NTHREADS)

/ | before = after = [0,] * NTHREADS

8

9 | invariant min(before) >= max(after)

10

11 | def thread(self):

12 for _ in { 1 .. NROUNDS }:

13 before[self] += 1 work done before barrier
14 barrier.bwait(?barr)

15 after[self] += 1 work done after barrier
16

17 | for 1 in { @ .. NTHREADS - 1 }:

18 spawn thread(i)

Test program for barriers

1 | import barrier

2

3 | const NTHREADS = 3

4| const NROUNDS = 4

5

6 | barr = barrier.Barrier(NTHREADS)

/ | before = after = [0,] * NTHREADS

8 NO ONe Can pass
9 | invariant min(before) >= max(after) barrier until all
10 .
0 . reached the barrier
12 for _ in { 1 .. NROUNDS }:

13 before[self] += 1 work done before barrier
14 barrier.bwait(?barr)

15 after[self] += 1 work done after barrier
16

17 | for 1 in { @ .. NTHREADS - 1 }:

18 spawn thread(i)

Barrier Specification, Attempt 1

1 | def Barrier(required) returns barrier:

2 barrier = { .required: required, .n: @ } | State:

3 - required: #threads
4 | def bwait(b): - n: #threads that have
5 atomically b->n += 1 reached the barrier
6 atomically await b->n == b->required

Barrier Specification, Attempt 1

def Barrier(required) returns barrier:

barrier = { .required: required, .n: @ } | State:

- required: #threads
def bwait(b): - n: #threads that have
atomically b->n += 1 reached the barrier

S U1l p WINBP

atomically await b->n == b->required

Barrier Specification, Attempt 1

def Barrier(required) returns barrier:

barrier = { .required: required, .n: @ } | State:

- required: #threads
def bwait(b): - n: #threads that have
atomically b->n += 1 reached the barrier

o Ul pWIN B

atomically await b->n == b->required
ait'
N

Barrier Specification, Attempt 1

1 | def Barrier(required) returns barrier:
2 barrier = { .required: required, .n: @ } | State:
3 - required: #threads
4 | def bwait(b): - n: #threads that have
5 atomically b->n +=1 reached the barrier
6 atomically await b->n == b->required
e Yo“ﬁd
ks OB

Barrier Specification, Attempt 2

1 | def Barrier(required) returns barrier:

2 barrier = { .required: required, .n: 0 }
3

4 | def bwait(b):

5 atomically:

6 b->n += 1

7 1f b->n == b->required:

8 b->n = @

9

atomically await b->n ==

Barrier Specification, Attempt 2

1 | def Barrier(required) returns barrier:

2 barrier = { .required: required, .n: 0 }
3

4 | def bwait(b):

5 atomically:

6 b->n += 1

7 1f b->n == b->required:

8 b->n = @

9

atomically await b->n ==

Barrier Specification, Attempt 3

1 | def Barrier(required) returns barrier:

2 barrier = { .required: required, .n: [0, 0] }
3

4 | def turnstile(b, 1i):

5 atomically:

6 b->n[i] += 1

7 if b->n[1i] == b->required:

8 b->n[1 - i] = @

9 atomically await b->n[i] == b->required
10

11 | def bwait(b):

12 turnstile(b, 0)

13 turnstile(b, 1)

Barrier Specification, Attempt 3

1 | def Barrier(required) returns barrier:

2 barrier = { .required: required, .n: [0, 0] }
3

4 | def turnstile(b, 1i):

5 atomically:

6 b->n[i] += 1

7 if b->n[1i] == b->required:

8 b->n[1 - i] = 0

9 atomically await b->n[i] == b->required
10

11 | def bwait(b):

12 turnstile(b, 0)

13 turnstile(b, 1)

Barrier Specification, final version

O 0o NOoOYUTL A WDN B

e
N P

def Barrier(required) returns barrier:
barrier = { .required: required, .n: @, .color: 0 }

def bwait(b):

var color = None State:
atomically: - required: #threads
color = b->color - n: #threads that have
b->n += 1 reached the barrier
if b->n == b->required: - color: allows re-use of
b->color /=1 barrier. Flipped each round
b->n = 0
atomically await b->color != color

Barrier Implementation

1 | from synch import *

2

3 | def Barrier(required) returns barrier:

4 barrier = {

5 .mutex: Lock(), .cond: Condition(),
6 .required: required, .n: @, .color: 0
/ }

8

9 | def bwait(b):

10 acquire(?b->mutex)

11 b->n += 1

12 if b->n == b->required:

13 b->color A= 1

14 b->n = 0

15 notify_all(?b->cond)

16 else:

17 let color = b->color:

18 while b->color == color:

19 wait(?b->cond, ?b->mutex)
20 release(?b->mutex)

Advanced Barrier Synchronization

* Given is aresource of finite capacity
o Bus with N seats, say

* Resource must be used at full capacity
o Bus won’t go until it is full

* Resource must be completed emptied
before it can be re-used

o Everybody must get off at destination
before anybody can get back on the bus

Advanced Barrier Synchronization

* Given is aresource of finite capacity
o Bus with N seats, say

* Resou rce,must bg us?d at f 'I{\O“\' ty
o Bus won’t go until it | “QS

* Resource mus*’ “\Q-Led emptied
before * \‘:ﬁt&qsed

O ”(YSQ\C .aust get off at destination
L ¥ 9. canybody can get back on the bus

Interface

* enter(resource)
o must wait if resource is in use or if resource
has not yet been fully unloaded
o after that, must wait until resource is full
 exit(resource)
o any time

Rounds and Phases

* Round: each time the resource gets used

* Three phases in each round:
1. Resourceisloaded
2. Resourceis used
3. Resourceisunloaded
* Two waiting conditions:
o Wait until resource is fully unloaded

— Before starting to load the resource
o Wait until resource is fully loaded

— Before starting to use the resource

Rollercoaster

1 | from synch import *

2

3 | def RollerCoaster(nseats): result = {

4 .mutex: Lock(), .nseats: nseats, .entered: 0, .left: nseats, — =
5 .empty: Condition(), .full: Condition() JOE MCBRIDE / GETTY IMAGES
6|1}

7

8 | def enter(b):

9 acquire(?b->mutex)

10 while b->entered == b->nseats: # wait for car to empty out

13 wait(?b->empty, ?b->mutex)

12 b->entered += 1

3 if b->entered != b->nseats: # wait for car to fill up

14 while b->entered < b->nseats:

15 wait(?b->full, ?b->mutex)

16 else: # car is ready to go

17 b->left = @

18 notify_all(?b->full) # wake up others waiting in car
19 release(?b->mutex)

20

21 | def exit(b):

22 acquire(?b->mutex)

23 b->left += 1

24 if b->left == b->nseats: # car is empty

25 b->entered = 0

26 notify_all(?b->empty) # wake up riders wanting to go

27 release(?b->mutex)

Interrupt
Safety

Cornell CIS

COMPUTING AND INFORMATION SCIENCE

281

Interrupt handling

* When executing in user space, a device
interrupt is invisible to the user process

— State of user process is unaffected by the device interrupt
and its subsequent handling

— This is because contexts are switched back and forth

- So, the user space context is exactly restored to the state it
was in before the interrupt

Interrupt handling

* However, there are also “in-context”

Interrupts:
o kernel code can be interrupted
o user code can handle “signals”

- Potential for race conditions

(44) 3
Traps™ In Harmony
1 | count = 0
/2 | done = False
3 :
| ey s - check c_ount ==11n
5 the final state
6 | def handler():
7 count += 1
8 done = True
9
10 | def main(): -
11 trap handler() invoke Patndletl’() at
12 await done some 1tuture time
13 Within the same thread!
14 | spawn main() (trap # spawn)

But what now?

O 0o N UL A WN B

el el =
i D WNRERPS

count = 0
done = False

finally count == 2

def handler():
count += 1
done = True

def main():

trap handler()
count += 1
await done

spawn main()

But what now?

O 0o N UL A WN B

el el =
i D WNRERPS

count = 0
done = False

finally count ==

def handler():
count += 1
done = True

def main():

trap handler()
count += 1
awalit done

spawn main()

Summary: something went wrong in an execution

e Schedule thread To: init()

o Line 1: Initialize count to 0
o Line 2: Initialize done to False
o Thread terminated
e Schedule thread T1: main()
o Line 12: Interrupted: jump to interrupt handler first
o Line 12: Interrupts disabled
o Line 7: Set count to 1 (was 0)
o Line 8: Set done to True (was False)
o Line 6: Interrupts enabled
o Line 12: Set count to 1 (unchanged)
o Thread terminated

 Schedule thread T2: finally()

o Line 4: Harmony assertion failed

Locks to the rescue?

1 | from synch import Lock, acquire, release
2

3 | countlock = Lock()

4 | count = 0

5 | done = False

6

7 | finally count == 2

8

9 | def handler():

10 acquire(?countlock)
11 count += 1

12 release(?countlock)
13 done = True

14

15 | def main():

16 trap handler()

17 acquire(?countlock)
18 count += 1

19 release(?countlock)
20 await done

21

22 | spawn main()

L ocks to the rescue?

1 | from synch import Lock, acq
2

3 | countlock = Lock()

4 | count = 0

5 | done = False

6

7 | finally count ==

8

9 | def handler():

10 acquire(?countlock)
11 count += 1

12 release(?countlock)
13 done = True

14

15 | def main():

16 trap handler()

17 acquire(?countlock)
18 count += 1

19 release(?countlock)
20 await done

21

22 | spawn main()

Summary: some execution cannot terminate
e Schedule thread TO: init()

o Line 3: Initialize countlock to False
o Line 4: Initialize count to O

o Line 5: Initialize done to False
e Schedule thread T1: main()

o Line synch/36: Set countlock to True (was False)

o Line 18: Set count to 1 (was 0)

o Line synch/39: Interrupted: jump to interrupt handler first
o Line synch/39: Interrupts disabled

o Preempted in main() --> release(?countlock) --> handler() --> acquire(?
countlock) about to execute atomic section in line synch/35

Final state (all threads have terminated or are blocked):

e Threads:
o T1: (blocked interrupts-disabled) main() --> release(?countlock) -->
handler() --> acquire(?countlock)
= about to execute atomic section in line synch/35

Enabling/disabling interrupts

1 | count = 0

/2 | done = False

3

4 | finally count == 2

5

6 | def handler():

7 count += 1

8 done = True

9

10 | def main():

11 trap handler()

12 setintlevel(True)
s count += 1

14 setintlevel(False)
15 awalit done

16

17 | spawn main()

Interrupt Safe Methods

count = 0
2 done = False
3
4 | finally count ==
5
6 | def increment():
7 let prior = setintlevel(True): disable interrupts
8 count += 1
13 setintlevel(prior) restore old interrupt level
11 | def handler():
12 increment()
13 done = True
14
15 | def main():
16 trap handler()
17 increment()
18 await done
19
20 | spawn main()

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release
”

3 | count = 0

4 | countlock = Lock()

5 | done = [False, False]

6

7 | finally count ==

8

9 | def increment():

10 let prior = setintlevel(True):
11 acquire(?countlock)
12 count += 1

13 release(?countlock)
14 setintlevel(prior)
15

16 | def handler(self):

17 increment()

18 done[self| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment()

23 await done[self]

24

25 | spawn thread(0)

26 | spawn thread(1)

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release
2

3 | count = 0

4 | countlock = Lock()

5 | done = [False, False |

6

7 | finally count ==

8

9 | def increment():

10 let prior = setintlevel(True):

11 acquire(?countlock)

12 count += 1

13 release(?countlock)

14 setintlevel(prior)

15

16 | def handler(self):

17 increment()

18 done[self| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment()]]
23| await done[self] wait for own interrupt
24

25 | spawn thread(0)

26 | spawn thread(1)

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release
2

3 | count = 0

4 | countlock = Lock()

5 | done = [False, False |

6

7 | finally count ==

8

9 | def increment():

10 let prior = setintlevel(True):

11 acquire(?countlock)

12 count += 1

13 release(?countlock)

14 setintlevel(prior)

15

16 | def handler(self):

17 increment()

18 done[self| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment()]
23| await done[self] wait for own interrupt
24

25 | spawn thread(0)

26 | spawn thread(1)

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release
2

3 | count = 0

4 | countlock = Lock()

5 | done = [False, False |

6

7 | finally count ==

8

9 | def increment():

10 let prior = setintlevel(True):

11 acquire(?countlock)

12 count += 1

13 release(?countlock)

14 setintlevel(prior)

15

16 | def handler(self):

17 increment()

18 done[self| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment()]
23| await done[self] wait for own interrupt
24

25 | spawn thread(0)

26 | spawn thread(1)

Interrupt-safe AND Thread-safe?

1 | from synch import Lock, acquire, release
2

3 | count = 0

4 | countlock = Lock()

5 | done = [False, False |

6

7 | finally count ==

8

9 | def increment():

10 let prior = setintlevel(True):

11 acquire(?countlock)

12 count += 1

13 release(?countlock)

14 setintlevel(prior)

15

16 | def handler(self):

17 increment()

18 done[self| = True

19

20 | def thread(self):

21 trap handler(self)

22 increment()]
23| await done[self] wait for own interrupt
24

25 | spawn thread(0)

26 | spawn thread(1)

Warning: very few C functions are
interrupt-safe

* pure system calls are interrupt-safe
o e.g. read(), write(), etc.

* functions that do not use global data are

interrupt-safe
o e.g. strlen(), strcpy(), etc.

* malloc() and free() are not interrupt-safe
* printf() is not interrupt-safe
* However, all these functions are thread-safe

