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• What are the problems?
o no determinism, no atomicity
• What is the solution?
o some form of mutual exclusion
• How to specify concurrent problems?
o atomic operations
• How to construct correct concurrent code?
o behaviors
• How to test concurrent programs?
o comparing behaviors

Concurrency Lectures Outline
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• How to build Concurrent Data Structures?
o using locks
• How to wait for some condition?
o using condition variables
• How to deal with deadlock?
o prevention, avoidance, detection
• How to use barrier synchronization?
o improve scalability
• How to make code interrupt-safe?
o enabling/disabling interrupts

Concurrency Lectures Outline
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The problems



Why?
o Concurrent programs are non-deterministic
- run them twice with same input, get two different answers
- or worse, one time it works and the second time it fails

o Program statements are executed non-atomically
- x += 1 compiles to something like

• LOAD x
• ADD 1
• STORE x
- with concurrency, this leads to non-deterministic 

interleavings

Concurrent Programming is Hard
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• A new concurrent programming language
o heavily based on Python syntax to reduce 

learning curve for many
• A new underlying virtual machine
o it tries all possible executions of a program 

until it finds a problem, if any
(this is called “model checking”)

Harmony
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The problem with non-determinism
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sequential concurrent

What will happen if you run each?



The problem with non-determinism
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sequential concurrent

#states: 2
No issues

•Schedule thread T0: init()
• Line 1: Initialize shared to True
• Thread terminated

•Schedule thread T2: g()
• Line 4: Set shared to False (was True)
• Thread terminated

•Schedule thread T1: f()
• Line 3: Harmony assertion failed



The problem with non-atomicity
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sequential concurrent

What will happen if you run each?



10

sequential concurrent

Schedule thread T1: f()
 Preempted in f()
  about to store 1 into shared in line 3
Schedule thread T2: f()
 Line 3: Set shared to 1 (was 0)
Schedule thread T1: f()
 Line 3: Set shared to 1 (unchanged)
Schedule thread T3: finally()
 Line 8: Harmony assertion failed

#states: 2
No issues

The problem with non-atomicity



= timing dependent error involving shared state

• A schedule is an interleaving of (i.e., total order 
on) the machine instructions executed by each 
thread

• Usually, many interleavings are possible
• A race condition occurs when at least one 

interleaving gives an undesirable result

Race Conditions

11



• Number of possible interleavings is usually huge
• Bad interleavings, if they exist, may happen only rarely
-   Works 1000x ≠ no race condition

• Timing dependent: small changes hide bugs
o add print statement à bug no longer seems to happen
• Harmony is designed to help identify such bugs
o model checking!

Race Conditions are Hard to Debug
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State Space and 
Model Checking



1. Frame f()  Start a new stack frame
2. Load shared Push shared onto stack
3. Push 1  Push 1 onto stack
4. 2-ary +  Add top two stack elements
5. Store shared Store top of stack into shared

Harmony Machine Code
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def f():
  shared += 1 compiler



Three parts:
1. code (never changes)
2. values of the shared variables
3. state of each of the running threads
• PC and stack (aka context)

HVM state represents one vertex in a graph of states

Harmony Virtual Machine State
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State space
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shared 0

Load shared
Push 1
2-ary +
Store shared

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

initial state



State space
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shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 1

shared 2

shared 1

L

S

L

S

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

A possible execution



State space
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shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 0

shared 1

L L S S

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

shared 1
Another possible execution



State space
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shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 0

L

L

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

All possible states after one “step”



State space
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shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 0

shared 0

shared 1

shared 1

L

L

S

S

L

L

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

All possible states after two steps



State space
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shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 0

shared 0

shared 1

shared 1

shared 1

shared 1

shared 1

shared 1

L

L

S

S

L

L

L

L

S

S

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

after three steps



State space
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Load shared
Push 1
2-ary +
Store shared

L

shared 0

shared 0

shared 0

shared 0

shared 1

shared 1

shared 2

shared 1

shared 1

shared 1shared 1

shared 1

L

L

S

S

L

L

L

S

S

S

S

S

S

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores



Harmony



Harmony != Python

24

Harmony Python
tries all possible executions executes just one
( … ) == [ … ] == … 1 != [1] != (1)
1, == [1,] == (1,) != (1) == [1] == 1 [1,] == [1] != (1) == 1 != (1,)
f(1) == f 1 == f[1] f 1 and f[1] are illegal (if f is method)

no return, break, continue various flow control escapes
pointers object-oriented
… …



• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?
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• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?
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No open(), re
ad(), or

or input() sta
tements



Three sources:
1.  choose expressions
2.  thread interleavings
3.  interrupts

Non-determinism in Harmony
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Limitation: models must be finite!
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shared 0

shared 0

shared 0

shared 1

shared 1
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shared 1shared 1

shared 1

L

L

S

S

L

L

L

S

S

S

S

S

S



Limitation: models must be finite!
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shared 0

shared 0

shared 0

shared 0

shared 1

shared 1

shared 2

shared 1

shared 1

shared 1shared 1

shared 1

L

L

S

S

L

L

L

S

S

S

S

S

S

• That is, there must be a finite number of states and edges.
• But models are allowed to have cycles.
• Executions are allowed to be unbounded!
• Harmony checks for possibility of termination.



Critical 
Sections



2 threads updating a shared variable

Back to our problem…
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2 threads updating a shared variable

Back to our problem…
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“Critical Section”



2 threads updating a shared variable

Back to our problem…
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“Critical Section”

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: a thread can get in when there is no other thread
Fairness: equal chances of getting into CS
      … in practice, fairness rarely guaranteed or needed



Need both:
o either one is trivial to achieve by itself

Mutual Exclusion and Progress
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Specifying Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 



Specifying Critical Sections in Harmony

36

• How do we check mutual exclusion?
• How do we check progress? 



Specifying Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 

mutual exclusion



Specifying Critical Sections in Harmony

38

• How do we check mutual exclusion?
• How do we check progress? 

do zero or more times

mutual exclusion



Specifying Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 

do zero or more times

mutual exclusion

increment in_cs



Specifying Critical Sections in Harmony
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• How do we check mutual exclusion?
• How do we check progress? 

do zero or more times

mutual exclusion

increment in_cs

execute critical section



Specifying Critical Sections in Harmony
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do zero or more times

mutual exclusion

increment in_cs

execute critical section

decrement in_cs

• How do we check mutual exclusion?
• How do we check progress? 



Specifying Critical Sections in Harmony
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Progress: Harmony checks that all thread can terminate

do zero or more times

mutual exclusion

increment in_cs

execute critical section

decrement in_cs



Building a lock 
is hard



• Spec is fine, but we’ll need an 
implementation too
• Sounds like we need a lock
• The question is:

   How does one build a lock?

Specification vs implementation
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First attempt: a naïve lock
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First attempt: a naïve lock
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wait till lock is free, then take it



First attempt: a naïve lock
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Second attempt: flags
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Second attempt: flags

49

show intent to enter critical section



Second attempt: flags
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wait until there’s no one else

show intent to enter critical section



Second attempt: flags
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Third attempt: turn variable
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Third attempt: turn variable
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after you...



Third attempt: turn variable

54

after you...
wait for your turn



Third attempt: turn variable
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Peterson’s Algorithm: flags & turn
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Peterson’s Algorithm: flags & turn
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in critical section



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic

in critical section



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic
uses flags and turn variable (3 bits total)

in critical section



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic
uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic
uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

also give other thread a turn first



Peterson’s Algorithm: flags & turn
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load and store instructions are atomic
uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

also give other thread a turn first
wait for one of either conditions



Proving a 
concurrent 

program 
correct



So, we proved Peterson’s Algorithm 
correct by brute force, enumerating all 
possible executions.  We now know that it 
works.

But how does one prove it by deduction?
 so one understands why it works…
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• Need to show that, for any execution, all 
states reached satisfy mutual exclusion
o in other words, mutual exclusion is invariant
invariant = predicate that holds in every reachable state

What and how?
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A property that holds in all reachable states
 (and possibly in some unreachable states as well)

What is a property?

 A property is a set of states

often succinctly described using a predicate
 (all states that satisfy the predicate and no others)

What is an invariant?
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Invariant Property
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Reachable 
States

All States

Invariant Property

initial state



Invariant Property
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Reachable 
States

All States

Invariant Property

States in which 
mutual exclusion 

holds

initial state



Invariant Property
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Reachable 
States

All States

Invariant Property

States in which 
mutual exclusion 

holds

Includes states where 
mutual exclusion is 

violated

initial state



• Need to show that, for any execution, all 
states reached satisfy the invariant

• Sounds similar to sorting:
o Need to show that, for any list of numbers, the 

resulting list is ordered

• Let’s try proof by induction on the length of 
an execution

How to prove an invariant?
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You want to prove that some Induction 
Hypothesis IH(n) holds for any n:
o Base Case:
- show that IH(0) holds
o Induction Step:
- show that if IH(i) holds, then so does IH(i+1)

Proof by induction

71



To show that some IH holds for an 
execution E of any number of steps:
o Base Case:
- show that IH holds in the initial state(s)
o Induction Step:
- show that if IH holds in a state produced by E, 

then for any possible next step s,  IH also holds 
in the state produced by E + [s]

Proof by induction in our case
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• Theorem: if T is in the critical section, 
then flags[T] = True
• Base case: true because initially T is not 

in the critical section and False implies 
anything
• Induction: easy to show (using Hoare 

logic) because flags[T] can only be 
changed by T itself

Example
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Data Races



• Assumes that LOAD and STORE 
instructions are atomic
• Not guaranteed on a real processor
• Also not guaranteed by C, Java, Python, 

…

Peterson’s Reconsidered
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Loads and Stores are atomic



• CPU with 16-bit architecture
• 32-bit integer variable x stored in memory in two 

adjacent locations (aligned on word boundary)
• Initial value is 0
• Thread 1 writes FFFFFFFF to x (requires 2 STOREs)
• Thread 2 reads x (requires 2 LOADs)
• What are the possible values that thread 2 will read?

For example
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• CPU with 16-bit architecture
• 32-bit integer variable x stored in memory in two 

adjacent locations (aligned on word boundary)
• Initial value is 0
• Thread 1 writes FFFFFFFF to x (requires 2 STOREs)
• Thread 2 reads x (requires 2 LOADs)
• What are the possible values that thread 2 will read?
o FFFFFFFF
o 00000000
o FFFF0000
o 0000FFFF

For example
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• In Python, integers are arbitrary precision
o that is, each integer variable is a complex data 

structure, and an operation may require 
multiple loads and stores

• Suppose your C compiler decides to pack 
multiple bits in a single word
o E.g., flags[0], flags[1], and turn
o Then setting a bit involves a load and a store

Other examples
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• Hardware may also cause problems in 
efforts to improve performance
o buffering of writes
o caching of reads
o out-of-order execution
• Because of all these issues, programming 

languages will typically leave the 
outcome of concurrent operations to a 
variable undefined
o if at least one of those operations is a store

Concurrent memory access
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• When two or more threads wish to access the same 
variable at the same time

• And at least one access is a STORE
• Then the semantics of the outcome is undefined
o That is:
- The value stored in the variable is undefined
- The value loaded (if any) is undefined
- Undefined means random (or worse, like a crash)

Data Race
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• sequential turn, flags in Peterson’s
• ensures that loads/stores are atomic
• that is, concurrent operations appear to be 

executed sequentially
• This is called “sequential consistency”
For example
• Shared variable x contains 3
• Thread A stores 4 into x
• Thread B loads x
o With atomic load/store operations, B will read either 3 or 4
o With normal operations, the value that B reads is undefined

Harmony “sequential” statement
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• Java has a similar notion:
o volatile int x ;
o All accesses to volatile variables are sequentially 

consistent (but not whole program)
• Not to be confused with the same keyword in C 

and C++ though…
• Loading/storing volatile (sequentially 

consistent) variables is more expensive than 
loading/storing ordinary variables
o because it restricts CPU and/or compiler 

optimizations
o e.g., rules out caching

Sequential consistency

84



• Peterson’s algorithm is correct with 
atomic LOAD and STORE instructions
o hardware supports such instructions but 

they are very expensive
• Peterson’s can be generalized to >2 

processes
o even more STOREs and LOADs

Too inefficient in practice

Peterson’s Reconsidered Again
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Specifying a 
lock



• What does a lock do exactly?
• What if we want more than one?

Back to basics: specifying a lock
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• If x is a shared variable, ?x is the address of x
• If p is a variable and p contains ?x, then we say 

that p is a pointer and it points to x
• Finally, !p refers to the value of x

Harmony interlude: pointers
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Where?
There!



Specifying a lock
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Specifying a lock

90

returns initial value

acquires lock atomically once available

releases lock atomically



Critical Section using a lock
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Critical Section using a lock

92

Contains Lock spec



• We say that a lock is held or owned by a thread
o implicit “ghost” state (not an actual variable)
o nonetheless can be used for reasoning

• Two important invariants: 
1.  𝑇@𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑆𝑒𝑐𝑡𝑖𝑜𝑛 ⇒ 𝑇 holds the lock
2. at most one thread can hold the lock

Together guarantee mutual exclusion

Many (most?) systems do not keep track of who 
holds a particular lock, if anybody

“Ghost” state
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Implementing 
a lock



We saw that it is hard and inefficient to 
implement a lock with just LOAD and 
STORE instructions

Implementing a lock
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Machine instructions that do multiple 
shared memory accesses atomically

• e.g., test_and_set s
o sets s to True
o returns old value of s
• i.e., does the following:
- LOAD r0, s  # load variable s into register r0
- STORE s, 1  # store TRUE in variable s

• Entire operation is atomic
o other machine instructions cannot interleave

Enter Interlock Instructions
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Lock implementation (“spinlock”)
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specification of the CPU’s
test_and_set functionality

specification of the CPU’s
atomic store functionality

lock implementation



Specification vs Implementation
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Specification: describes what an abstraction does
Implementation: describes how

fine line



• Spinlocks work well when threads on 
different cores need to synchronize
• But how about when it involves two 

threads time-shared on the same core:
o when there is no pre-emption?

o when there is pre-emption?

Spinlocks and Time Sharing
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• Spinlocks work well when threads on 
different cores need to synchronize
• But how about when it involves two 

threads time-shared on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is 

trying to obtain a spinlock
o when there is pre-emption?

Spinlocks and Time Sharing
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• Spinlocks work well when threads on 
different cores need to synchronize
• But how about when it involves two 

threads time-shared on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is 

trying to obtain a spinlock
o when there is pre-emption?
- can cause delays and waste of CPU cycles while 

a thread is trying to obtain a spinlock

Spinlocks and Time Sharing
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• Harmony allows contexts to be saved 
and restored (i.e., context switch)

o r = stop p
- stops the current thread and stores context in !p
o go (!p) r
- adds a thread with the given context to the bag 

of threads.  Thread resumes from stop 
expression, returning r

Context switching in Harmony
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Locks using stop and go
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.acquired: boolean

.suspended: queue of contexts



Locks using stop and go
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.acquired: boolean

.suspended: queue of contexts

put thread on wait queue

resume first thread on wait queue



Locks using stop and go
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Similar to a Linux “futex”: if there is no contention 
(hopefully the common case) acquire() and release() are 
cheap.  If there is contention, they involve a context switch.



• “synch” is the (default) module that has 
the specification of a lock
• “synchS” is the module that has the 
stop/go version of lock
• you can select which one you want:

  harmony -m synch=synchS x.hny

• “synch” tends to be faster than “synchS”
- smaller state graph 

Choosing modules in Harmony
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Atomic Section ≠ Critical Section

107

Atomic Section Critical Section
only one thread can execute multiple threads can execute 

concurrently, just not within a 
critical section

rare programming language 
paradigm

ubiquitous: locks available in 
many mainstream 
programming languages

good for specifying interlock 
instructions

good for implementing 
concurrent data structures



• A Data Race occurs when two threads try 
to access the same variable and at least 
one access is non-atomic and at least 
one access is an update.
- The outcome of the operations is undefined

• A Race Condition occurs when the 
correctness of the program depends on 
ordering of variable access
-Race Condition can happen without a Data Race

Data Race ≠ Race Condition 
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• Data Race: Harmony can automatically 
detect these because Harmony 
enumerates all behaviors and fails if 
there is undefined behavior
• Race Condition: Harmony can only detect 

these if you tell Harmony what it is that 
you want using assert, invariant, or 
finally
- or by explicitly enumerating the correct 

behaviors, as we’ll see later

Data Race ≠ Race Condition 
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Demo Time



Harmony demo
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Demo 1: 
data race Demo 2: no data race

Demo 3: same 
semantics as 
Demo 2:



Harmony demo
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Demo 4: still a data race

Demo 5: data race 
freedom does not imply 
no race conditions



Harmony demo
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Demo 6: spec of 
what we want

Demo 7: implementation 
using critical section



Harmony demo
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Demo 8: broken implementation using two critical sections



Concurrent 
Data Structure 

Consistency



• Each data structure maintains some consistency 
property
o e.g., in a linked list, there is a head, a tail, a list of 

nodes such that head points to first node, tail points 
to the last node, and each node points to the next 
one except the last, which points to None.  However, 
if the list is empty, head and tail are both None.

Data Structure consistency

116

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None



• Each data structure maintains some consistency 
property
o e.g., in a linked list, there is a head, a tail, a list of 

nodes such that head points to first node, tail points 
to the last node, and each node points to the next 
one except the last, which points to None.  However, 
if the list is empty, head and tail are both None.

• You can assume the property holds right after 
obtaining the lock
• You must make sure the property holds again 

right before releasing the lock

Consistency using locks
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• Each data structure maintains some consistency 
property
• Invariant:
o lock not held ⟹ data structure consistent
• Or equivalently:
o data structure inconsistent ⟹	lock held

Consistency using locks
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• q = queue.Queue(): initialize a new queue
• queue.put(q, v): add v to the tail of queue q
• v = queue.get(q): returns None if q is empty or 

v if v was at the head of the queue

Building a concurrent queue

119



• Answer: all important
o any resource that needs scheduling
-CPU run queue
-disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
-Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

120



• Answer: all important
o any resource that needs scheduling
-CPU run queue
-disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
-Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

121
Good performance is critical!



Specifying a concurrent queue
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Specifying a concurrent queue

123

Sequential Concurrent



Example of using a queue
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enqueue v onto !q

dequeue and check

create queue



Specifying a concurrent queue
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Not a good implementation because
• operations are O(n)
• code uses atomically

compiler cannot generate code



Implementing 
a concurrent 

queue



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

dynamic memory allocation



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

empty queue



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

allocate node



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

release lock



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff



Queue implementation, v1
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.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

malloc’d memory must be 
explicitly released (cf. C)



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

atomically q->tail->next = node 



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent 
enqueue and dequeue operations! 
è more concurrency è faster



Concurrent queue v2: 2 locks
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.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent 
enqueue and dequeue operations! 
è more concurrency è faster

Needs to avoid data race on 
dummyànext when queue is empty



Fine-Grained 
Locking



• The two-lock queue is an example of a data 
structure with finer-grained locking
• A global lock is easy, but limits concurrency
• Fine-grained or local locking can improve 

concurrency, but tends to be trickier to get right

Global vs. Local Locks
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Sorted Linked List with Lock per Node
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.value

.next
.value
.next

∞
.next None

−∞
.next

empty list

• −∞	represented by (-1, None)
• v represented by (0, v)
• ∞	represented by (1, None)
Note that ∀v: (-1, None) < (0, v) < (1, None)
       (lexicographical ordering)



Sorted Linked List with Lock per Node
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.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two 
consecutive nodes before and after such that
 before → 𝑣𝑎𝑙𝑢𝑒 < 	𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟	 → 𝑣𝑎𝑙𝑢𝑒	



Sorted Linked List with Lock per Node
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.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two 
consecutive nodes before and after such that
 before → 𝑣𝑎𝑙𝑢𝑒 < 	𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟	 → 𝑣𝑎𝑙𝑢𝑒	

Hand-over hand locking
(good for data structures 
without cycles)



Sorted Linked List with Lock per Node
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Sorted Linked List with Lock per Node

148

Multiple threads can access the 
list simultaneously, but they 
can’t overtake one another



Systematic 
Testing



• Sequential case
o try all “sequences” of 1 operation
-put or get (in case of queue)
o try all sequences of 2 operations
-put+put, put+get, get+put, get+get, …
o try all sequences of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test 

against implementation with running test 
against the sequential specification

Systematic Testing

150



• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if an interleaving is 

correct?
o compare “behaviors” of running test 

against concurrent implementation with 
running test against the concurrent 
specification

Systematic Testing

151



• And what is a behavior?
How do we capture behaviors?

152



Life of an atomic operation

153

process invokes 
operation

process resumes 
with result

operation happens 
atomically

TIME



Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (after X)
3. customer Y is served a burger
4. customer X is served a burger (after Y)

Concurrency and Overlap

154



Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (after X)
3. customer Y is served a burger
4. customer X is served a burger (after Y)

We’ve all seen this happen.  It’s a matter of 
how things get scheduled!

Concurrency and Overlap
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• One operation: order a burger
o result: a burger (at some later time)
• Semantics: the burger manifests itself 

atomically sometime during the operation
o Atomically: no two manifestations overlap
• It’s easier to specify something when you don’t 

have to worry about overlap
o i.e., you can simply give a sequential specification

Specification

156



• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs 

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X  receives burger

Implementation?

157

1

2

X:

Y:



• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs 

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X  receives burger

Implementation?
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1

2

X:

Y:

• can’t happen if Y orders burger after X receives burger
• but if operations overlap, any ordering can happen… 



Correct Behaviors
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put(1)

get() à ?

TIME

(1)



Correct Behaviors
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put(1)

get() à 1

TIME

(1)



Correct Behaviors

161

put(1)

get() à 1

TIME

put(1)

get() à ?

(1)

(2)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

(1)

(2)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à ???

(1)

(2)

(3)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à None

(1)

(2)

(3)



Correct Behaviors
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put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à 1

(1)

(2)

(3)



Concurrent queue test program
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Correct behaviors (1 get, 1 put)

167

$ harmony -c N_GET=1 –c N_PUT=1 code/queue_btest2.hny



• The first command outputs the behavior of 
running the test program against the 
specification in file queue.hfa
• The second command runs the test program 

against the implementation and checks if its 
behavior matches that stored in queue.hfa

Testing: comparing behaviors

168



• Not allowed to look under the covers
o can’t use rw->nreaders, etc.
• Only allowed to invoke the interface methods 

and observe behaviors
• Your job: try to find bad behaviors
o compare against a specification
o how would you test a clock?  An ATM machine?
- without looking inside

• In general testing cannot ensure correctness
o only a correctness proof can
o testing may or may not expose a bug
o model checking helps expose bugs

Black Box Testing

169



Conditional
Waiting



• Thus far we’ve shown how threads can 
wait for one another to avoid multiple 
threads in the critical section
• Sometimes there are other reasons:
o Wait until queue is non-empty
o Wait until there are no readers (or writer) in 

a reader/writer section
o …

Conditional Waiting

171



Idea: allow multiple read-only operations 
to execute concurrently
o Still no data races
o In many cases, reads are much more 

frequent than writes

èEither:
• multiple readers, or
• a single writer

Reader/writer lock

172

thus not:
• a reader and a writer, nor
• multiple writers



Reader/Writer Lock Specification
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Reader/Writer Lock Specification
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Invariants:
• if 𝑛 readers in the R/W critical section, then 𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 ≥ 𝑛
• if 𝑛 writers in the R/W critical section, then 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 ≥ 𝑛
• 𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 ≥ 0 ∧ 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 = 0 ∨ (𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 = 0 ∧ 0 ≤ 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 ≤ 1)



R/W Locks: test for mutual exclusion
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no writer, one or more readers

one writer, no readers



Cheating R/W lock implementation
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The lock protects the 
application’s critical section



Cheating R/W lock implementation
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The lock protects the 
application’s critical section

Allows only one reader to get 
the lock at a time

Does not have the same 
behavior as the specification
• it is missing behaviors
• no bad behaviors though



Busy Waiting Implementation
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Busy Waiting Implementation
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The lock protects nreaders 
and nwriters, not the 
critical section of the 
application 



Busy Waiting Implementation
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waiting conditions



Busy Waiting Implementation
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Good: has the same behaviors as 
the implemention

Bad: process is continuously 
scheduled to try to get the lock 
even if it’s not available

(Harmony complains about this 
as well)



• A lock can have one or more condition variables
• A thread that holds the lock but wants to wait 

for some condition to hold can temporarily 
release the lock by waiting on some condition 
variable
• Associate a condition variable with each 

“waiting condition”
o reader: no writer in the critical section
o writer: no readers nor writers in the c.s.

Mesa Condition Variables

182



• When a thread that holds the lock notices 
that some waiting condition is satisfied it 
should notify the corresponding 
condition variable

Mesa Condition Variables, cont’d
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R/W lock with Mesa condition variables

184

r_cond: used by readers to wait on nwriters == 0
w_cond: used by writers to wait on nreaders == 0 == nwriters



R/W Lock, reader part
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R/W Lock, reader part
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similar to 
busy waiting



R/W Lock, reader part
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similar to 
busy waiting

but need this



R/W Lock, reader part
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similar to 
busy waiting

but need this

• Always use while
• Never just if (or nothing)
• wait without while is 

called a “naked wait”



R/W Lock, reader part
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compare with busy waiting



R/W Lock, reader part

190

compare with busy waiting



R/W Lock, writer part

191

don’t forget anybody!



• wait(cv, lock)
o may only be called while holding lock
o temporarily releases lock
- but re-acquires it before resuming

o if cv not notified, may block indefinitely
- but wait() may resume ”on its own”

• notify(cv)
o no-op if nobody is waiting on cv
o otherwise wakes up at least one thread waiting on cv
• notify_all(cv)
o wakes up all threads currently waiting on cv

Condition Variable interface

192



Busy Waiting or?
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Busy Waiting or?
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Busy Waiting or?
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State unchanged while condition does 
not hold.  This thread only “observes” 
the state until condition holds

State conditionally changes while condition does 
not hold.  This thread actively changes the state 
until the condition hold



Busy Waiting or?
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State unchanged while condition does 
not hold.  This thread only “observes” 
the state until condition holds

State conditionally changes while condition does 
not hold.  This thread actively changes the state 
until the condition hold



• Consider a timesharing setting
• Threads T1 and T2 take turns on the CPU
o switch every 100 milliseconds

• Suppose T1 has a write lock and is running
• Now suppose a clock interrupt occurs, T2 starts running and 

tries to acquire a read lock
• Non-busy-waiting acquisition:
o T2 is put on a waiting queue and T1 resumes immediately and 

runs until T1 releases the write lock
- which puts T2 back on the run queue

• Busy-waiting acquisition:
o T2 keeps running (wasting CPU) until the next clock interrupt
o T1 and T2 switch back and forth every 100 ms until T1 releases 

the write lock

Why is busy waiting bad?
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Busy Waiting vs Condition Variables

198

Busy Waiting Condition Variables
Use a lock and a loop Use a lock and a collection of 

condition variables and a loop
Easy to write the code Notifying is tricky
Easy to understand the code Easy to understand the code
Progress property is easy Progress requires careful 

consideration (both for correctness 
and efficiency)

Ok-ish for true multi-core, but bad 
for virtual threads

Good for both multi-core and 
virtual threading



Just Say No to Busy Waiting
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By the time waiter gets the lock back, 
condition may no longer hold
o E.g., given three threads: W1, R2, W3
o W1 enters as a writer
o R2 waits as a reader
o W1 leaves, notifying R2
o W3 enters as a writer
o R2 wakes up
- If R2 doesn’t check condition again, R2 and W3 

would both be in the critical section

Why no naked waits? (reason 1)

200

A naked wait is a wait() without while around it



• When notifying, be safe rather than sorry
o it’s better to notify too many threads than 

too few
o in case of doubt, use notify_all() instead of 

just notify()
• Over-notifying can lead to some threads 

waking up when their condition is no 
longer satisfied

Why no naked waits? (reason 2)
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• Because you should use while around wait, 
many condition variable implementations allow 
“spurious wakeups”
o wait() resumes even though condition variable was 

not notified
o simplifies implementation of wait()

Why no naked waits? (reason 3)
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Just Say No to Naked Waits

203



• Use separate condition variables for each 
waiting condition
• Don’t use notify_all when notify suffices
o but be safe rather than sorry
• You can use N calls to notify if you know 

at most N nodes can continue after a 
waiting condition holds

Hints for reducing unneeded wakeups
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Deadlock



Deadlock example

206

What could go wrong?



Harmony output
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Summary: some execution cannot terminate
•   Schedule thread T0: init()
     Line 6: Set accounts to [ { "balance": 3, "lock": False }, { "balance": 7, "lock": False } ]
•   Schedule thread T1: transfer(0, 1, 1)
    Line synch/36: Set accounts[0]["lock"] to True (was False)
    Line 11: Set accounts[0]["balance"] to 2 (was 3)
    Preempted in transfer(0, 1, 1) --> acquire(?accounts[1]["lock"])
• Schedule thread T2: transfer(1, 0, 2)
    Line synch/36: Set accounts[1]["lock"] to True (was False)
    Line 11: Set accounts[1]["balance"] to 5 (was 7)
    Preempted in transfer(1, 0, 2) --> acquire(?accounts[0]["lock"])
Final state (all threads have terminated or are blocked):
  Threads:
    T1: (blocked) transfer(0, 1, 1) --> acquire(?accounts[1]["lock"])
    T2: (blocked) transfer(1, 0, 2) --> acquire(?accounts[0]["lock"])
Variables:
    accounts: [ { "balance": 2, "lock": True }, { "balance": 5, "lock": True } ] 



Harmony HTML Output
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• Starvation: some processes can run in 
theory, but the scheduler continually 
selects other processes to run first.  Tied 
to fairness in scheduling.
• Deadlock: no process can run because all 

are waiting for another process to 
change the state. The scheduler can’t 
help you now.

Deadlock vs Starvation

209



• Livelock: some processes continually 
change their state but don’t make 
progress (like polite people trying to pass 
one another in a narrow hallway).  The 
scheduler could fix this in theory.
• Deadlock: no process can run because all 

are waiting for another process to 
change the state. The scheduler can’t 
help you now.

Deadlock vs Livelock
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• Collection of resources and threads
o Examples of resources: I/O devices, GPUs, locks, buffers, slots 

in a buffer, …
• Exclusive access
o Only one thread can use a resource at a time
o Protocol:

1. Thread acquires resource
• thread is blocked until resource is free

2. Thread holds the resource
• resource is allocated (not free) at this time

3. Thread releases the resource

System Model

211



1. Mutual Exclusion
o acquire() can block invoker until resource is free

2. Hold & wait
o A thread can be blocked while holding resources

3. No preemption
o Allocated resources cannot be reclaimed

4. Circular wait
o Let Ti à Tj denote “Ti waits for Tj to release a resource”.
o Then ∃T1, … Tn : T1 à T2 à … à Tn à T1

Necessary Conditions for Deadlock

212

Edward Coffman 1971



Example: Mutual Exclusion
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Mutual exclusion

Mutual exclusion



Example: Hold & Wait
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Thread holds a1.lock

Thread wants a2.lock



Example: No Preemption
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Only holder can release lock



Example: Circular Wait

216

Circular wait conditions



Prevention:  Programmer ensures that at least 
one of the necessary conditions cannot hold

Avoidance:  Scheduler avoids deadlock scenarios 
(e.g., by executing each thread to completion)

Detect and Recover:  Allow deadlocks to happen.  
Detect them and recover in some way

Three ways to deal with deadlock

217



Deadlock
Prevention



1. Mutual Exclusion
2. Hold & wait
3. No preemption
4. Circular wait

Negate one of the following:

219



o Make resources sharable without locks
- Non-blocking concurrent data structures
• See Harmony book for examples

o Have sufficient resources available so 
acquire() never blocks

- bounded buffer: make sure it is large enough
• Doesn’t work for locks, as there is only one per 

critical section

1. Negate Mutual Exclusion

220



2. Negate Hold & Wait

221

Release resource 
before acquiring another



2: Negate Hold & Wait, badly

222

check if funds are available

withdraw funds from a1

deposit funds for a2

What could go wrong?



2. Negate Hold & Wait, alternate

223

Acquire resources at 
the same time

Spec: Acquire two locks



• Time-multiplexing of resources
o threads: context switching
o memory: paging
• Database transactions
o 2-phase locking + transaction abort and retry
• Not available for locks

3. Allow Preemption
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• Define a total order on resources
• Rule: a thread cannot acquire a resource that is 

“lower” than a resource already held
• Either:
o a thread is careful to acquire resources that it needs 

in order, or
o a thread that wants to acquire a resource R must first 

release all resources that are lower than R

4: Negate circular wait
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Theorem:  Resource ordering prevents circular wait
Proof by contradiction:
• Assume circular wait exists
• ∃T1, … Tn : T1 à T2 à … à Tn à T1
• Ti holds Ri
• Ti requests Rj held by Tj  (𝑗 = 𝑖 + 1 	𝐦𝐨𝐝	𝑛)
• Resource ordering: R1 < R2 , …,  Rn-1 < Rn , Rn < R1 
• R1 < R1 (by transitivity of total order)
• Violates irreflexivity of total order

Why does resource ordering work?
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4: Negate circular wait

227

Acquire resources 
in order



Deadlock
Avoidance



Deadlock in traffic

229

How can these be avoided?



• Scheduler carefully schedules threads so 
deadlock cannot occur
• For example, it might allow only one thread 

to run at a time, to completion
o This is extreme: no concurrency
o Doesn’t work with conditional waiting
• Better solutions typically require that the 

scheduler has some abstract knowledge of what 
the threads are trying to accomplish

Deadlock Avoidance

230



• A state is an allocation of resources to threads
• The state changes each time a thread allocates or 

releases a resource
• A safe state is a state from which an execution exists 

that does not cause deadlock
• Notes:
o the initial state is safe: threads can be scheduled one 

at a time and run to completion
o an unsafe state is not necessarily deadlocked, but 

deadlock is unavoidable eventually
o deadlock may be possible from a safe state, but it is 

avoidable through careful scheduling

Safe States

231



• Scheduler should only allow safe states 
to happen in an execution
o When a thread tries to acquire() a resource, 

the scheduler should block the thread, if 
acquiring the resource leads to an unsafe 
state, until this is no longer the case

o release() is always ok

Deadlock Avoidance
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Deadlock Avoidance

233

How?



Deadlock Avoidance

234

For example, don’t schedule 
two threads transfer(𝑎1, 𝑎2) 
and transfer(𝑎3, 𝑎4) at the 
same time unless 
	𝑎1, 𝑎2	 ∩ 𝑎3, 𝑎4 = 	∅



Avoidance specified in Harmony
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enforce no intersection 
with active transfers

update scheduler state

keep track of which 
accounts are active



Deadlock
Detection and 

Recovery



• Keep track of allocation of resources to 
threads

Deadlock Detection
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ResourcesThreads



• Keep track of allocation of resources to 
threads
• Keep track of which threads are trying to 

acquire which resource

Deadlock Detection
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ResourcesThreads



• Known as the Resource Allocation Graph
• Deadlock ≡ cycle in the graph

Deadlock Detection
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ResourcesThreads



• Known as the Resource Allocation Graph
• Deadlock ≡ cycle in the graph

Deadlock Detection
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ResourcesThreads



• Graph Reduction Algorithm:
o While there are nodes with no outgoing edges
- select one such node
- remove node and its incoming edges
o If the resulting graph empty (no nodes), then 

no cycles
o No cycles ⟹ No deadlock

Finding Cycles
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Deadlock Detection
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ResourcesThreads



Deadlock Detection
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ResourcesThreads



Deadlock Detection
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ResourcesThreads



Deadlock Detection
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ResourcesThreads



Deadlock Detection
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ResourcesThreads



Deadlock Detection
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ResourcesThreads

No more nodes can be removed, but graph is non-empty à
         cycle is present 



• Deadlock detection is expensive
• When to run graph reduction?
o When a resource request cannot be granted? 
o When a thread has been blocked for a certain 

amount of time?
o Periodically?

Deadlock Detection
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• Blue screen and reboot
o Can lose data / results of long computations
• Deny a request to remove cycle
o Programmer responsible for exception
• Kill processes until cycle is gone
o Can lose data / results of long computations
o Select processes that have been running shortest 

amount of time
• Use transactions to access resources
o Abort and retry transaction if deadlock exists
o Requires roll-back or versioning of state

Deadlock Recovery Strategies
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Actors

[Robbert van Renesse]



• An actor is a type of process
• Each actor has an incoming message queue
• No other shared state
• Actors communicate by “message passing”
o placing messages on message queues
• Supports modular concurrent programs
• Actors and message queues are abstractions

Actor Model

251



• Data structure owned by a “server actor”
• Client actors can send request messages to the server and receive response 

messages if necessary
• Server actor awaits requests on its queue and executes one request at a time

è 
o Mutual Exclusion (one request at a time)
o Progress (requests eventually get to the head of the queue)
o Fairness (requests are handled in FCFS order)

Mutual Exclusion with Actors
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actor 3

actor 2

actor 1



• An actor can “wait” for a condition by 
waiting for a specific message
• An actor can “notify” another actor by 

sending it a message

Conditional Critical Sections with Actors
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• Organize program with a Manager Actor  and a collection of 
Worker Actors

• Manager Actor sends work requests to the Worker Actors
• Worker Actors send completion requests to the Manager Actor 

Parallel processing with Actors
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head worker 3

worker 2

worker 5

worker 4

worker 1



Parallel processing example
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• Organize program as a chain of actors
• For example, REST/HTTP server
o Network receive actor à HTTP parser actor 
à REST request actor à Application actor 
à REST response actor à HTTP response 
actor à Network send actor

Pipeline Parallelism with Actors
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actor 2actor 1 actor 3

automatic flow control (when actors run at different rates)
• with bounded buffer queues



Pipelining Example

257
Find Mersenne primes



• Native support in languages such as 
Scala and Erlang
• ”blocking queues” in Python, Harmony, 

Java
• Actor support libraries for Java, C, …

Actors also nicely generalize to distributed 
systems!

Support for actors in programming 
languages
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• Doesn’t work well for “fine-grained” 
synchronization
o overhead of message passing much higher 

than lock/unlock
• Sending/receiving messages just to 

access a data structure leads to 
significant extra code

Actor disadvantages?
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Barrier
Synchronization

260



• Set of processes run in rounds
• Must all complete a round before starting the next
• Popular in simulation, HPC, graph processing, model 

checking…
o Lock-based synchronization reduces opportunities for 

parallelism
o Barrier Synchronization supports scalable parallelism

Barrier Synchronization: the opposite 
of mutual exclusion…



• Barrier(N): barrier for N threads
• bwait(): start the next round

Barrier abstraction

262



Example: dot product
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Test program for barriers
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work done before barrier

work done after barrier



Test program for barriers
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work done before barrier

work done after barrier

no one can pass 
barrier until all 

reached the barrier



Barrier Specification, Attempt 1
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State:
- required: #threads
- n: #threads that have 

reached the barrier



Barrier Specification, Attempt 1
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turnstile
State:
- required: #threads
- n: #threads that have 

reached the barrier



Barrier Specification, Attempt 1
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waiting area

State:
- required: #threads
- n: #threads that have 

reached the barrier
turnstile



Barrier Specification, Attempt 1
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Only works one round

State:
- required: #threads
- n: #threads that have 

reached the barrier



Barrier Specification, Attempt 2
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Barrier Specification, Attempt 2
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Broken!

(if used more than once)



Barrier Specification, Attempt 3
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Barrier Specification, Attempt 3

273

Works, but double

waiting is inefficient



Barrier Specification, final version
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State:
- required: #threads
- n: #threads that have 

reached the barrier
- color: allows re-use of 

barrier.  Flipped each round



Barrier Implementation
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• Given is a resource of finite capacity
o Bus with N seats, say
• Resource must be used at full capacity
o Bus won’t go until it is full
• Resource must be completed emptied 

before it can be re-used
o Everybody must get off at destination 

before anybody can get back on the bus

Advanced Barrier Synchronization

276



• Given is a resource of finite capacity
o Bus with N seats, say
• Resource must be used at full capacity
o Bus won’t go until it is full
• Resource must be completed emptied 

before it can be re-used
o Everybody must get off at destination 

before anybody can get back on the bus

Advanced Barrier Synchronization

277

Typical Exam Question!



• enter(resource)
o must wait if resource is in use or if resource 

has not yet been fully unloaded
o after that, must wait until resource is full
• exit(resource)
o any time

Interface

278



• Round: each time the resource gets used
• Three phases in each round:

1. Resource is loaded
2. Resource is used
3. Resource is unloaded
• Two waiting conditions:
o Wait until resource is fully unloaded
-Before starting to load the resource
o Wait until resource is fully loaded
-Before starting to use the resource

Rounds and Phases
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Rollercoaster

280

JOE MCBRIDE / GETTY IMAGES



Interrupt 
Safety
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• When executing in user space, a device 
interrupt is invisible to the user process
- State of user process is unaffected by the device interrupt 

and its subsequent handling
- This is because contexts are switched back and forth
- So, the user space context is exactly restored to the state it 

was in before the interrupt

Interrupt handling
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• However, there are also “in-context” 
interrupts:
o kernel code can be interrupted
o user code can handle “signals”
à Potential for race conditions

Interrupt handling
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“Traps” in Harmony

284

invoke handler() at 
some future time
Within the same thread!

(𝑡𝑟𝑎𝑝	 ≠ 𝑠𝑝𝑎𝑤𝑛)

check count == 1 in 
the final state



But what now?
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But what now?
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Locks to the rescue?
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Locks to the rescue?
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Enabling/disabling interrupts
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disable interrupts

enable interrupts



Interrupt-Safe Methods
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disable interrupts

restore old interrupt level



Interrupt-safe AND Thread-safe?
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Interrupt-safe AND Thread-safe?
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wait for own interrupt



Interrupt-safe AND Thread-safe?
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first disable interrupts

wait for own interrupt



Interrupt-safe AND Thread-safe?

294

first disable interrupts

then acquire a lock

wait for own interrupt
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first disable interrupts

then acquire a lock

why 4?

wait for own interrupt



• pure system calls are interrupt-safe
o e.g. read(), write(), etc. 
• functions that do not use global data are 

interrupt-safe
o e.g. strlen(), strcpy(), etc. 
• malloc() and free() are not interrupt-safe 
• printf() is not interrupt-safe
• However, all these functions are thread-safe 

Warning: very few C functions are 
interrupt-safe
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