
Concurrent Programming
with Harmony

Robbert van Renesse

• What are the problems?
o no determinism, no atomicity
• What is the solution?
o some form of mutual exclusion
• How to specify concurrent problems?
o atomic operations
• How to construct correct concurrent code?
o behaviors
• How to test concurrent programs?
o comparing behaviors

Concurrency Lectures Outline

2

• How to build Concurrent Data Structures?
o using locks
• How to wait for some condition?
o using condition variables
• How to deal with deadlock?
o prevention, avoidance, detection
• How to use barrier synchronization?
o improve scalability
• How to make code interrupt-safe?
o enabling/disabling interrupts

Concurrency Lectures Outline

3

The problems

Why?
o Concurrent programs are non-deterministic
- run them twice with same input, get two different answers
- or worse, one time it works and the second time it fails

o Program statements are executed non-atomically
- x += 1 compiles to something like

• LOAD x
• ADD 1
• STORE x
- with concurrency, this leads to non-deterministic

interleavings

Concurrent Programming is Hard

5

• A new concurrent programming language
o heavily based on Python syntax to reduce

learning curve for many
• A new underlying virtual machine
o it tries all possible executions of a program

until it finds a problem, if any
(this is called “model checking”)

Harmony

6

The problem with non-determinism

7

sequential concurrent

What will happen if you run each?

The problem with non-determinism

8

sequential concurrent

#states: 2
No issues

•Schedule thread T0: init()
• Line 1: Initialize shared to True
• Thread terminated

•Schedule thread T2: g()
• Line 4: Set shared to False (was True)
• Thread terminated

•Schedule thread T1: f()
• Line 3: Harmony assertion failed

The problem with non-atomicity

9

sequential concurrent

What will happen if you run each?

10

sequential concurrent

Schedule thread T1: f()
 Preempted in f()
 about to store 1 into shared in line 3
Schedule thread T2: f()
 Line 3: Set shared to 1 (was 0)
Schedule thread T1: f()
 Line 3: Set shared to 1 (unchanged)
Schedule thread T3: finally()
 Line 8: Harmony assertion failed

#states: 2
No issues

The problem with non-atomicity

= timing dependent error involving shared state

• A schedule is an interleaving of (i.e., total order
on) the machine instructions executed by each
thread

• Usually, many interleavings are possible
• A race condition occurs when at least one

interleaving gives an undesirable result

Race Conditions

11

• Number of possible interleavings is usually huge
• Bad interleavings, if they exist, may happen only rarely
- Works 1000x ≠ no race condition

• Timing dependent: small changes hide bugs
o add print statement à bug no longer seems to happen
• Harmony is designed to help identify such bugs
o model checking!

Race Conditions are Hard to Debug

12

State Space and
Model Checking

1. Frame f() Start a new stack frame
2. Load shared Push shared onto stack
3. Push 1 Push 1 onto stack
4. 2-ary + Add top two stack elements
5. Store shared Store top of stack into shared

Harmony Machine Code

14

def f():
 shared += 1 compiler

Three parts:
1. code (never changes)
2. values of the shared variables
3. state of each of the running threads
• PC and stack (aka context)

HVM state represents one vertex in a graph of states

Harmony Virtual Machine State

15

State space

16

shared 0

Load shared
Push 1
2-ary +
Store shared

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

initial state

State space

17

shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 1

shared 2

shared 1

L

S

L

S

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

A possible execution

State space

18

shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 0

shared 1

L L S S

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

shared 1
Another possible execution

State space

19

shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 0

L

L

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

All possible states after one “step”

State space

20

shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 0

shared 0

shared 1

shared 1

L

L

S

S

L

L

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

All possible states after two steps

State space

21

shared 0

Load shared
Push 1
2-ary +
Store shared

shared 0

shared 0

shared 0

shared 1

shared 1

shared 1

shared 1

shared 1

shared 1

L

L

S

S

L

L

L

L

S

S

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

after three steps

State space

22

Load shared
Push 1
2-ary +
Store shared

L

shared 0

shared 0

shared 0

shared 0

shared 1

shared 1

shared 2

shared 1

shared 1

shared 1shared 1

shared 1

L

L

S

S

L

L

L

S

S

S

S

S

S

thread 1 loads
thread 2 loads

thread 1 stores
thread 2 stores

Harmony

Harmony != Python

24

Harmony Python
tries all possible executions executes just one
(…) == […] == … 1 != [1] != (1)
1, == [1,] == (1,) != (1) == [1] == 1 [1,] == [1] != (1) == 1 != (1,)
f(1) == f 1 == f[1] f 1 and f[1] are illegal (if f is method)

no return, break, continue various flow control escapes
pointers object-oriented
… …

• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?

25

• Input:
o choose expression
- x = choose({ 1, 2, 3 })
- allows Harmony to know all possible inputs
o const expression
- const x = 3
- can be overridden with “-c x=4” flag to harmony
o Output:
-print x + y
- assert x + y < 10, (x, y)

I/O in Harmony?

26

No open(), re
ad(), or

or input() sta
tements

Three sources:
1. choose expressions
2. thread interleavings
3. interrupts

Non-determinism in Harmony

27

Limitation: models must be finite!

28

shared 0

shared 0

shared 0

shared 0

shared 1

shared 1

shared 2

shared 1

shared 1

shared 1shared 1

shared 1

L

L

S

S

L

L

L

S

S

S

S

S

S

Limitation: models must be finite!

29

shared 0

shared 0

shared 0

shared 0

shared 1

shared 1

shared 2

shared 1

shared 1

shared 1shared 1

shared 1

L

L

S

S

L

L

L

S

S

S

S

S

S

• That is, there must be a finite number of states and edges.
• But models are allowed to have cycles.
• Executions are allowed to be unbounded!
• Harmony checks for possibility of termination.

Critical
Sections

2 threads updating a shared variable

Back to our problem…

31

2 threads updating a shared variable

Back to our problem…

32

“Critical Section”

2 threads updating a shared variable

Back to our problem…

33

“Critical Section”

Goals
Mutual Exclusion: 1 thread in a critical section at time
Progress: a thread can get in when there is no other thread
Fairness: equal chances of getting into CS
 … in practice, fairness rarely guaranteed or needed

Need both:
o either one is trivial to achieve by itself

Mutual Exclusion and Progress

34

Specifying Critical Sections in Harmony

35

• How do we check mutual exclusion?
• How do we check progress?

Specifying Critical Sections in Harmony

36

• How do we check mutual exclusion?
• How do we check progress?

Specifying Critical Sections in Harmony

37

• How do we check mutual exclusion?
• How do we check progress?

mutual exclusion

Specifying Critical Sections in Harmony

38

• How do we check mutual exclusion?
• How do we check progress?

do zero or more times

mutual exclusion

Specifying Critical Sections in Harmony

39

• How do we check mutual exclusion?
• How do we check progress?

do zero or more times

mutual exclusion

increment in_cs

Specifying Critical Sections in Harmony

40

• How do we check mutual exclusion?
• How do we check progress?

do zero or more times

mutual exclusion

increment in_cs

execute critical section

Specifying Critical Sections in Harmony

41

do zero or more times

mutual exclusion

increment in_cs

execute critical section

decrement in_cs

• How do we check mutual exclusion?
• How do we check progress?

Specifying Critical Sections in Harmony

42

Progress: Harmony checks that all thread can terminate

do zero or more times

mutual exclusion

increment in_cs

execute critical section

decrement in_cs

Building a lock
is hard

• Spec is fine, but we’ll need an
implementation too
• Sounds like we need a lock
• The question is:

 How does one build a lock?

Specification vs implementation

44

First attempt: a naïve lock

45

First attempt: a naïve lock

46

wait till lock is free, then take it

First attempt: a naïve lock

47

Second attempt: flags

48

Second attempt: flags

49

show intent to enter critical section

Second attempt: flags

50

wait until there’s no one else

show intent to enter critical section

Second attempt: flags

51

Third attempt: turn variable

52

Third attempt: turn variable

53

after you...

Third attempt: turn variable

54

after you...
wait for your turn

Third attempt: turn variable

55

Peterson’s Algorithm: flags & turn

56

Peterson’s Algorithm: flags & turn

57

in critical section

Peterson’s Algorithm: flags & turn

58

load and store instructions are atomic

in critical section

Peterson’s Algorithm: flags & turn

59

load and store instructions are atomic
uses flags and turn variable (3 bits total)

in critical section

Peterson’s Algorithm: flags & turn

60

load and store instructions are atomic
uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

Peterson’s Algorithm: flags & turn

61

load and store instructions are atomic
uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

also give other thread a turn first

Peterson’s Algorithm: flags & turn

62

load and store instructions are atomic
uses flags and turn variable (3 bits total)

first indicate intention to enter critical section

in critical section

no longer in critical section

also give other thread a turn first
wait for one of either conditions

Proving a
concurrent

program
correct

So, we proved Peterson’s Algorithm
correct by brute force, enumerating all
possible executions. We now know that it
works.

But how does one prove it by deduction?
 so one understands why it works…

64

• Need to show that, for any execution, all
states reached satisfy mutual exclusion
o in other words, mutual exclusion is invariant
invariant = predicate that holds in every reachable state

What and how?

65

A property that holds in all reachable states
 (and possibly in some unreachable states as well)

What is a property?

 A property is a set of states

often succinctly described using a predicate
 (all states that satisfy the predicate and no others)

What is an invariant?

66

Invariant Property

67

Reachable
States

All States

Invariant Property

initial state

Invariant Property

68

Reachable
States

All States

Invariant Property

States in which
mutual exclusion

holds

initial state

Invariant Property

69

Reachable
States

All States

Invariant Property

States in which
mutual exclusion

holds

Includes states where
mutual exclusion is

violated

initial state

• Need to show that, for any execution, all
states reached satisfy the invariant

• Sounds similar to sorting:
o Need to show that, for any list of numbers, the

resulting list is ordered

• Let’s try proof by induction on the length of
an execution

How to prove an invariant?

70

You want to prove that some Induction
Hypothesis IH(n) holds for any n:
o Base Case:
- show that IH(0) holds
o Induction Step:
- show that if IH(i) holds, then so does IH(i+1)

Proof by induction

71

To show that some IH holds for an
execution E of any number of steps:
o Base Case:
- show that IH holds in the initial state(s)
o Induction Step:
- show that if IH holds in a state produced by E,

then for any possible next step s, IH also holds
in the state produced by E + [s]

Proof by induction in our case

72

• Theorem: if T is in the critical section,
then flags[T] = True
• Base case: true because initially T is not

in the critical section and False implies
anything
• Induction: easy to show (using Hoare

logic) because flags[T] can only be
changed by T itself

Example

73

Data Races

• Assumes that LOAD and STORE
instructions are atomic
• Not guaranteed on a real processor
• Also not guaranteed by C, Java, Python,

…

Peterson’s Reconsidered

75

Loads and Stores are atomic

• CPU with 16-bit architecture
• 32-bit integer variable x stored in memory in two

adjacent locations (aligned on word boundary)
• Initial value is 0
• Thread 1 writes FFFFFFFF to x (requires 2 STOREs)
• Thread 2 reads x (requires 2 LOADs)
• What are the possible values that thread 2 will read?

For example

76

• CPU with 16-bit architecture
• 32-bit integer variable x stored in memory in two

adjacent locations (aligned on word boundary)
• Initial value is 0
• Thread 1 writes FFFFFFFF to x (requires 2 STOREs)
• Thread 2 reads x (requires 2 LOADs)
• What are the possible values that thread 2 will read?
o FFFFFFFF
o 00000000
o FFFF0000
o 0000FFFF

For example

77

• In Python, integers are arbitrary precision
o that is, each integer variable is a complex data

structure, and an operation may require
multiple loads and stores

• Suppose your C compiler decides to pack
multiple bits in a single word
o E.g., flags[0], flags[1], and turn
o Then setting a bit involves a load and a store

Other examples

78

• Hardware may also cause problems in
efforts to improve performance
o buffering of writes
o caching of reads
o out-of-order execution
• Because of all these issues, programming

languages will typically leave the
outcome of concurrent operations to a
variable undefined
o if at least one of those operations is a store

Concurrent memory access

81

• When two or more threads wish to access the same
variable at the same time

• And at least one access is a STORE
• Then the semantics of the outcome is undefined
o That is:
- The value stored in the variable is undefined
- The value loaded (if any) is undefined
- Undefined means random (or worse, like a crash)

Data Race

82

• sequential turn, flags in Peterson’s
• ensures that loads/stores are atomic
• that is, concurrent operations appear to be

executed sequentially
• This is called “sequential consistency”
For example
• Shared variable x contains 3
• Thread A stores 4 into x
• Thread B loads x
o With atomic load/store operations, B will read either 3 or 4
o With normal operations, the value that B reads is undefined

Harmony “sequential” statement

83

• Java has a similar notion:
o volatile int x ;
o All accesses to volatile variables are sequentially

consistent (but not whole program)
• Not to be confused with the same keyword in C

and C++ though…
• Loading/storing volatile (sequentially

consistent) variables is more expensive than
loading/storing ordinary variables
o because it restricts CPU and/or compiler

optimizations
o e.g., rules out caching

Sequential consistency

84

• Peterson’s algorithm is correct with
atomic LOAD and STORE instructions
o hardware supports such instructions but

they are very expensive
• Peterson’s can be generalized to >2

processes
o even more STOREs and LOADs

Too inefficient in practice

Peterson’s Reconsidered Again

85

Specifying a
lock

• What does a lock do exactly?
• What if we want more than one?

Back to basics: specifying a lock

87

• If x is a shared variable, ?x is the address of x
• If p is a variable and p contains ?x, then we say

that p is a pointer and it points to x
• Finally, !p refers to the value of x

Harmony interlude: pointers

88

Where?
There!

Specifying a lock

89

Specifying a lock

90

returns initial value

acquires lock atomically once available

releases lock atomically

Critical Section using a lock

91

Critical Section using a lock

92

Contains Lock spec

• We say that a lock is held or owned by a thread
o implicit “ghost” state (not an actual variable)
o nonetheless can be used for reasoning

• Two important invariants:
1. 𝑇@𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙𝑆𝑒𝑐𝑡𝑖𝑜𝑛 ⇒ 𝑇 holds the lock
2. at most one thread can hold the lock

Together guarantee mutual exclusion

Many (most?) systems do not keep track of who
holds a particular lock, if anybody

“Ghost” state

93

Implementing
a lock

We saw that it is hard and inefficient to
implement a lock with just LOAD and
STORE instructions

Implementing a lock

95

Machine instructions that do multiple
shared memory accesses atomically

• e.g., test_and_set s
o sets s to True
o returns old value of s
• i.e., does the following:
- LOAD r0, s # load variable s into register r0
- STORE s, 1 # store TRUE in variable s

• Entire operation is atomic
o other machine instructions cannot interleave

Enter Interlock Instructions

96

Lock implementation (“spinlock”)

97

specification of the CPU’s
test_and_set functionality

specification of the CPU’s
atomic store functionality

lock implementation

Specification vs Implementation

98

Specification: describes what an abstraction does
Implementation: describes how

fine line

• Spinlocks work well when threads on
different cores need to synchronize
• But how about when it involves two

threads time-shared on the same core:
o when there is no pre-emption?

o when there is pre-emption?

Spinlocks and Time Sharing

99

• Spinlocks work well when threads on
different cores need to synchronize
• But how about when it involves two

threads time-shared on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is

trying to obtain a spinlock
o when there is pre-emption?

Spinlocks and Time Sharing

100

• Spinlocks work well when threads on
different cores need to synchronize
• But how about when it involves two

threads time-shared on the same core:
o when there is no pre-emption?
- can cause all threads to get stuck while one is

trying to obtain a spinlock
o when there is pre-emption?
- can cause delays and waste of CPU cycles while

a thread is trying to obtain a spinlock

Spinlocks and Time Sharing

101

• Harmony allows contexts to be saved
and restored (i.e., context switch)

o r = stop p
- stops the current thread and stores context in !p
o go (!p) r
- adds a thread with the given context to the bag

of threads. Thread resumes from stop
expression, returning r

Context switching in Harmony

102

Locks using stop and go

103

.acquired: boolean

.suspended: queue of contexts

Locks using stop and go

104

.acquired: boolean

.suspended: queue of contexts

put thread on wait queue

resume first thread on wait queue

Locks using stop and go

105

Similar to a Linux “futex”: if there is no contention
(hopefully the common case) acquire() and release() are
cheap. If there is contention, they involve a context switch.

• “synch” is the (default) module that has
the specification of a lock
• “synchS” is the module that has the
stop/go version of lock
• you can select which one you want:

 harmony -m synch=synchS x.hny

• “synch” tends to be faster than “synchS”
- smaller state graph

Choosing modules in Harmony

106

Atomic Section ≠ Critical Section

107

Atomic Section Critical Section
only one thread can execute multiple threads can execute

concurrently, just not within a
critical section

rare programming language
paradigm

ubiquitous: locks available in
many mainstream
programming languages

good for specifying interlock
instructions

good for implementing
concurrent data structures

• A Data Race occurs when two threads try
to access the same variable and at least
one access is non-atomic and at least
one access is an update.
- The outcome of the operations is undefined

• A Race Condition occurs when the
correctness of the program depends on
ordering of variable access
-Race Condition can happen without a Data Race

Data Race ≠ Race Condition

108

• Data Race: Harmony can automatically
detect these because Harmony
enumerates all behaviors and fails if
there is undefined behavior
• Race Condition: Harmony can only detect

these if you tell Harmony what it is that
you want using assert, invariant, or
finally
- or by explicitly enumerating the correct

behaviors, as we’ll see later

Data Race ≠ Race Condition

109

Demo Time

Harmony demo

111

Demo 1:
data race Demo 2: no data race

Demo 3: same
semantics as
Demo 2:

Harmony demo

112

Demo 4: still a data race

Demo 5: data race
freedom does not imply
no race conditions

Harmony demo

113

Demo 6: spec of
what we want

Demo 7: implementation
using critical section

Harmony demo

114

Demo 8: broken implementation using two critical sections

Concurrent
Data Structure

Consistency

• Each data structure maintains some consistency
property
o e.g., in a linked list, there is a head, a tail, a list of

nodes such that head points to first node, tail points
to the last node, and each node points to the next
one except the last, which points to None. However,
if the list is empty, head and tail are both None.

Data Structure consistency

116

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

• Each data structure maintains some consistency
property
o e.g., in a linked list, there is a head, a tail, a list of

nodes such that head points to first node, tail points
to the last node, and each node points to the next
one except the last, which points to None. However,
if the list is empty, head and tail are both None.

• You can assume the property holds right after
obtaining the lock
• You must make sure the property holds again

right before releasing the lock

Consistency using locks

117

• Each data structure maintains some consistency
property
• Invariant:
o lock not held ⟹ data structure consistent
• Or equivalently:
o data structure inconsistent ⟹	lock held

Consistency using locks

118

• q = queue.Queue(): initialize a new queue
• queue.put(q, v): add v to the tail of queue q
• v = queue.get(q): returns None if q is empty or

v if v was at the head of the queue

Building a concurrent queue

119

• Answer: all important
o any resource that needs scheduling
-CPU run queue
-disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
-Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

120

• Answer: all important
o any resource that needs scheduling
-CPU run queue
-disk, network, printer waiting queue
- lock waiting queue
o inter-process communication
-Posix pipes:
• cat file | tr a-z A-Z | grep RVR

o actor-based concurrency
o …

How important are concurrent queues?

121
Good performance is critical!

Specifying a concurrent queue

122

Specifying a concurrent queue

123

Sequential Concurrent

Example of using a queue

124

enqueue v onto !q

dequeue and check

create queue

Specifying a concurrent queue

125

Not a good implementation because
• operations are O(n)
• code uses atomically

compiler cannot generate code

Implementing
a concurrent

queue

Queue implementation, v1

127

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

Queue implementation, v1

128

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

dynamic memory allocation

Queue implementation, v1

129

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

empty queue

Queue implementation, v1

130

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

allocate node

Queue implementation, v1

131

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

grab lock

Queue implementation, v1

132

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff

Queue implementation, v1

133

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

release lock

Queue implementation, v1

134

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

Queue implementation, v1

135

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

the hard stuff

Queue implementation, v1

136

.head

.tail

.lock

.value

.next
.value
.next

.value

.next None

malloc’d memory must be
explicitly released (cf. C)

Concurrent queue v2: 2 locks

137

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

Concurrent queue v2: 2 locks

138

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

atomically q->tail->next = node

Concurrent queue v2: 2 locks

139

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

Concurrent queue v2: 2 locks

140

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent
enqueue and dequeue operations!
è more concurrency è faster

Concurrent queue v2: 2 locks

141

.head

.tail

.hdlock

.tllock

.value

.next
.value
.next

.value

.next None

dummy

No contention for concurrent
enqueue and dequeue operations!
è more concurrency è faster

Needs to avoid data race on
dummyànext when queue is empty

Fine-Grained
Locking

• The two-lock queue is an example of a data
structure with finer-grained locking
• A global lock is easy, but limits concurrency
• Fine-grained or local locking can improve

concurrency, but tends to be trickier to get right

Global vs. Local Locks

143

Sorted Linked List with Lock per Node

144

.value

.next
.value
.next

∞
.next None

−∞
.next

empty list

• −∞	represented by (-1, None)
• v represented by (0, v)
• ∞	represented by (1, None)
Note that ∀v: (-1, None) < (0, v) < (1, None)
 (lexicographical ordering)

Sorted Linked List with Lock per Node

145

.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two
consecutive nodes before and after such that
 before → 𝑣𝑎𝑙𝑢𝑒 < 	𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟	 → 𝑣𝑎𝑙𝑢𝑒	

Sorted Linked List with Lock per Node

146

.value

.next
.value
.next

∞
.next None

−∞
.next

Helper routine to find and lock two
consecutive nodes before and after such that
 before → 𝑣𝑎𝑙𝑢𝑒 < 	𝑣 ≤ 𝑎𝑓𝑡𝑒𝑟	 → 𝑣𝑎𝑙𝑢𝑒	

Hand-over hand locking
(good for data structures
without cycles)

Sorted Linked List with Lock per Node

147

Sorted Linked List with Lock per Node

148

Multiple threads can access the
list simultaneously, but they
can’t overtake one another

Systematic
Testing

• Sequential case
o try all “sequences” of 1 operation
-put or get (in case of queue)
o try all sequences of 2 operations
-put+put, put+get, get+put, get+get, …
o try all sequences of 3 operations
o …
• How do you know if a sequence is correct?
o compare “behaviors” of running test

against implementation with running test
against the sequential specification

Systematic Testing

150

• Concurrent case
o try all “interleavings” of 1 operation
o try all interleavings of 2 operations
o try all interleavings of 3 operations
o …
• How do you know if an interleaving is

correct?
o compare “behaviors” of running test

against concurrent implementation with
running test against the concurrent
specification

Systematic Testing

151

• And what is a behavior?
How do we capture behaviors?

152

Life of an atomic operation

153

process invokes
operation

process resumes
with result

operation happens
atomically

TIME

Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (after X)
3. customer Y is served a burger
4. customer X is served a burger (after Y)

Concurrency and Overlap

154

Is the following a possible scenario?
1. customer X orders a burger
2. customer Y orders a burger (after X)
3. customer Y is served a burger
4. customer X is served a burger (after Y)

We’ve all seen this happen. It’s a matter of
how things get scheduled!

Concurrency and Overlap

155

• One operation: order a burger
o result: a burger (at some later time)
• Semantics: the burger manifests itself

atomically sometime during the operation
o Atomically: no two manifestations overlap
• It’s easier to specify something when you don’t

have to worry about overlap
o i.e., you can simply give a sequential specification

Specification

156

• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X receives burger

Implementation?

157

1

2

X:

Y:

• Suppose the diner has one small hot plate and two cooks
• Cooks use a lock for access to the hot plate
• Possible scenario:
1. customer X orders burger, order ends up with cook 1
2. customer Y orders burger, order ends up with cook 2
3. cook 1 was busy with something else, so cook 2 grabs

the lock first
4. cook 2 cooks burger for Y
5. cook 2 releases lock
6. cook 1 grabs lock
7. cook 1 cooks burger for X
8. cook 1 releases lock
9. customer Y receives burger
10. customer X receives burger

Implementation?

158

1

2

X:

Y:

• can’t happen if Y orders burger after X receives burger
• but if operations overlap, any ordering can happen…

Correct Behaviors

159

put(1)

get() à ?

TIME

(1)

Correct Behaviors

160

put(1)

get() à 1

TIME

(1)

Correct Behaviors

161

put(1)

get() à 1

TIME

put(1)

get() à ?

(1)

(2)

Correct Behaviors

162

put(1)

get() à 1

TIME

put(1)

get() à None

(1)

(2)

Correct Behaviors

163

put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à ???

(1)

(2)

(3)

Correct Behaviors

164

put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à None

(1)

(2)

(3)

Correct Behaviors

165

put(1)

get() à 1

TIME

put(1)

get() à None

put(1)

get() à 1

(1)

(2)

(3)

Concurrent queue test program

166

Correct behaviors (1 get, 1 put)

167

$ harmony -c N_GET=1 –c N_PUT=1 code/queue_btest2.hny

• The first command outputs the behavior of
running the test program against the
specification in file queue.hfa
• The second command runs the test program

against the implementation and checks if its
behavior matches that stored in queue.hfa

Testing: comparing behaviors

168

• Not allowed to look under the covers
o can’t use rw->nreaders, etc.
• Only allowed to invoke the interface methods

and observe behaviors
• Your job: try to find bad behaviors
o compare against a specification
o how would you test a clock? An ATM machine?
- without looking inside

• In general testing cannot ensure correctness
o only a correctness proof can
o testing may or may not expose a bug
o model checking helps expose bugs

Black Box Testing

169

Conditional
Waiting

• Thus far we’ve shown how threads can
wait for one another to avoid multiple
threads in the critical section
• Sometimes there are other reasons:
o Wait until queue is non-empty
o Wait until there are no readers (or writer) in

a reader/writer section
o …

Conditional Waiting

171

Idea: allow multiple read-only operations
to execute concurrently
o Still no data races
o In many cases, reads are much more

frequent than writes

èEither:
• multiple readers, or
• a single writer

Reader/writer lock

172

thus not:
• a reader and a writer, nor
• multiple writers

Reader/Writer Lock Specification

173

Reader/Writer Lock Specification

174

Invariants:
• if 𝑛 readers in the R/W critical section, then 𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 ≥ 𝑛
• if 𝑛 writers in the R/W critical section, then 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 ≥ 𝑛
• 𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 ≥ 0 ∧ 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 = 0 ∨ (𝑛𝑟𝑒𝑎𝑑𝑒𝑟𝑠 = 0 ∧ 0 ≤ 𝑛𝑤𝑟𝑖𝑡𝑒𝑟𝑠 ≤ 1)

R/W Locks: test for mutual exclusion

175

no writer, one or more readers

one writer, no readers

Cheating R/W lock implementation

176

The lock protects the
application’s critical section

Cheating R/W lock implementation

177

The lock protects the
application’s critical section

Allows only one reader to get
the lock at a time

Does not have the same
behavior as the specification
• it is missing behaviors
• no bad behaviors though

Busy Waiting Implementation

178

Busy Waiting Implementation

179

The lock protects nreaders
and nwriters, not the
critical section of the
application

Busy Waiting Implementation

180

waiting conditions

Busy Waiting Implementation

181

Good: has the same behaviors as
the implemention

Bad: process is continuously
scheduled to try to get the lock
even if it’s not available

(Harmony complains about this
as well)

• A lock can have one or more condition variables
• A thread that holds the lock but wants to wait

for some condition to hold can temporarily
release the lock by waiting on some condition
variable
• Associate a condition variable with each

“waiting condition”
o reader: no writer in the critical section
o writer: no readers nor writers in the c.s.

Mesa Condition Variables

182

• When a thread that holds the lock notices
that some waiting condition is satisfied it
should notify the corresponding
condition variable

Mesa Condition Variables, cont’d

183

R/W lock with Mesa condition variables

184

r_cond: used by readers to wait on nwriters == 0
w_cond: used by writers to wait on nreaders == 0 == nwriters

R/W Lock, reader part

185

R/W Lock, reader part

186

similar to
busy waiting

R/W Lock, reader part

187

similar to
busy waiting

but need this

R/W Lock, reader part

188

similar to
busy waiting

but need this

• Always use while
• Never just if (or nothing)
• wait without while is

called a “naked wait”

R/W Lock, reader part

189

compare with busy waiting

R/W Lock, reader part

190

compare with busy waiting

R/W Lock, writer part

191

don’t forget anybody!

• wait(cv, lock)
o may only be called while holding lock
o temporarily releases lock
- but re-acquires it before resuming

o if cv not notified, may block indefinitely
- but wait() may resume ”on its own”

• notify(cv)
o no-op if nobody is waiting on cv
o otherwise wakes up at least one thread waiting on cv
• notify_all(cv)
o wakes up all threads currently waiting on cv

Condition Variable interface

192

Busy Waiting or?

193

Busy Waiting or?

194

Busy Waiting or?

195

State unchanged while condition does
not hold. This thread only “observes”
the state until condition holds

State conditionally changes while condition does
not hold. This thread actively changes the state
until the condition hold

Busy Waiting or?

196

State unchanged while condition does
not hold. This thread only “observes”
the state until condition holds

State conditionally changes while condition does
not hold. This thread actively changes the state
until the condition hold

• Consider a timesharing setting
• Threads T1 and T2 take turns on the CPU
o switch every 100 milliseconds

• Suppose T1 has a write lock and is running
• Now suppose a clock interrupt occurs, T2 starts running and

tries to acquire a read lock
• Non-busy-waiting acquisition:
o T2 is put on a waiting queue and T1 resumes immediately and

runs until T1 releases the write lock
- which puts T2 back on the run queue

• Busy-waiting acquisition:
o T2 keeps running (wasting CPU) until the next clock interrupt
o T1 and T2 switch back and forth every 100 ms until T1 releases

the write lock

Why is busy waiting bad?

197

Busy Waiting vs Condition Variables

198

Busy Waiting Condition Variables
Use a lock and a loop Use a lock and a collection of

condition variables and a loop
Easy to write the code Notifying is tricky
Easy to understand the code Easy to understand the code
Progress property is easy Progress requires careful

consideration (both for correctness
and efficiency)

Ok-ish for true multi-core, but bad
for virtual threads

Good for both multi-core and
virtual threading

Just Say No to Busy Waiting

199

By the time waiter gets the lock back,
condition may no longer hold
o E.g., given three threads: W1, R2, W3
o W1 enters as a writer
o R2 waits as a reader
o W1 leaves, notifying R2
o W3 enters as a writer
o R2 wakes up
- If R2 doesn’t check condition again, R2 and W3

would both be in the critical section

Why no naked waits? (reason 1)

200

A naked wait is a wait() without while around it

• When notifying, be safe rather than sorry
o it’s better to notify too many threads than

too few
o in case of doubt, use notify_all() instead of

just notify()
• Over-notifying can lead to some threads

waking up when their condition is no
longer satisfied

Why no naked waits? (reason 2)

201

• Because you should use while around wait,
many condition variable implementations allow
“spurious wakeups”
o wait() resumes even though condition variable was

not notified
o simplifies implementation of wait()

Why no naked waits? (reason 3)

202

Just Say No to Naked Waits

203

• Use separate condition variables for each
waiting condition
• Don’t use notify_all when notify suffices
o but be safe rather than sorry
• You can use N calls to notify if you know

at most N nodes can continue after a
waiting condition holds

Hints for reducing unneeded wakeups

204

Deadlock

Deadlock example

206

What could go wrong?

Harmony output

207

Summary: some execution cannot terminate
• Schedule thread T0: init()
 Line 6: Set accounts to [{ "balance": 3, "lock": False }, { "balance": 7, "lock": False }]
• Schedule thread T1: transfer(0, 1, 1)
 Line synch/36: Set accounts[0]["lock"] to True (was False)
 Line 11: Set accounts[0]["balance"] to 2 (was 3)
 Preempted in transfer(0, 1, 1) --> acquire(?accounts[1]["lock"])
• Schedule thread T2: transfer(1, 0, 2)
 Line synch/36: Set accounts[1]["lock"] to True (was False)
 Line 11: Set accounts[1]["balance"] to 5 (was 7)
 Preempted in transfer(1, 0, 2) --> acquire(?accounts[0]["lock"])
Final state (all threads have terminated or are blocked):
 Threads:
 T1: (blocked) transfer(0, 1, 1) --> acquire(?accounts[1]["lock"])
 T2: (blocked) transfer(1, 0, 2) --> acquire(?accounts[0]["lock"])
Variables:
 accounts: [{ "balance": 2, "lock": True }, { "balance": 5, "lock": True }]

Harmony HTML Output

208

• Starvation: some processes can run in
theory, but the scheduler continually
selects other processes to run first. Tied
to fairness in scheduling.
• Deadlock: no process can run because all

are waiting for another process to
change the state. The scheduler can’t
help you now.

Deadlock vs Starvation

209

• Livelock: some processes continually
change their state but don’t make
progress (like polite people trying to pass
one another in a narrow hallway). The
scheduler could fix this in theory.
• Deadlock: no process can run because all

are waiting for another process to
change the state. The scheduler can’t
help you now.

Deadlock vs Livelock

210

• Collection of resources and threads
o Examples of resources: I/O devices, GPUs, locks, buffers, slots

in a buffer, …
• Exclusive access
o Only one thread can use a resource at a time
o Protocol:

1. Thread acquires resource
• thread is blocked until resource is free

2. Thread holds the resource
• resource is allocated (not free) at this time

3. Thread releases the resource

System Model

211

1. Mutual Exclusion
o acquire() can block invoker until resource is free

2. Hold & wait
o A thread can be blocked while holding resources

3. No preemption
o Allocated resources cannot be reclaimed

4. Circular wait
o Let Ti à Tj denote “Ti waits for Tj to release a resource”.
o Then ∃T1, … Tn : T1 à T2 à … à Tn à T1

Necessary Conditions for Deadlock

212

Edward Coffman 1971

Example: Mutual Exclusion

213

Mutual exclusion

Mutual exclusion

Example: Hold & Wait

214

Thread holds a1.lock

Thread wants a2.lock

Example: No Preemption

215

Only holder can release lock

Example: Circular Wait

216

Circular wait conditions

Prevention: Programmer ensures that at least
one of the necessary conditions cannot hold

Avoidance: Scheduler avoids deadlock scenarios
(e.g., by executing each thread to completion)

Detect and Recover: Allow deadlocks to happen.
Detect them and recover in some way

Three ways to deal with deadlock

217

Deadlock
Prevention

1. Mutual Exclusion
2. Hold & wait
3. No preemption
4. Circular wait

Negate one of the following:

219

o Make resources sharable without locks
- Non-blocking concurrent data structures
• See Harmony book for examples

o Have sufficient resources available so
acquire() never blocks

- bounded buffer: make sure it is large enough
• Doesn’t work for locks, as there is only one per

critical section

1. Negate Mutual Exclusion

220

2. Negate Hold & Wait

221

Release resource
before acquiring another

2: Negate Hold & Wait, badly

222

check if funds are available

withdraw funds from a1

deposit funds for a2

What could go wrong?

2. Negate Hold & Wait, alternate

223

Acquire resources at
the same time

Spec: Acquire two locks

• Time-multiplexing of resources
o threads: context switching
o memory: paging
• Database transactions
o 2-phase locking + transaction abort and retry
• Not available for locks

3. Allow Preemption

224

• Define a total order on resources
• Rule: a thread cannot acquire a resource that is

“lower” than a resource already held
• Either:
o a thread is careful to acquire resources that it needs

in order, or
o a thread that wants to acquire a resource R must first

release all resources that are lower than R

4: Negate circular wait

225

Theorem: Resource ordering prevents circular wait
Proof by contradiction:
• Assume circular wait exists
• ∃T1, … Tn : T1 à T2 à … à Tn à T1
• Ti holds Ri
• Ti requests Rj held by Tj (𝑗 = 𝑖 + 1 	𝐦𝐨𝐝	𝑛)
• Resource ordering: R1 < R2 , …, Rn-1 < Rn , Rn < R1
• R1 < R1 (by transitivity of total order)
• Violates irreflexivity of total order

Why does resource ordering work?

226

4: Negate circular wait

227

Acquire resources
in order

Deadlock
Avoidance

Deadlock in traffic

229

How can these be avoided?

• Scheduler carefully schedules threads so
deadlock cannot occur
• For example, it might allow only one thread

to run at a time, to completion
o This is extreme: no concurrency
o Doesn’t work with conditional waiting
• Better solutions typically require that the

scheduler has some abstract knowledge of what
the threads are trying to accomplish

Deadlock Avoidance

230

• A state is an allocation of resources to threads
• The state changes each time a thread allocates or

releases a resource
• A safe state is a state from which an execution exists

that does not cause deadlock
• Notes:
o the initial state is safe: threads can be scheduled one

at a time and run to completion
o an unsafe state is not necessarily deadlocked, but

deadlock is unavoidable eventually
o deadlock may be possible from a safe state, but it is

avoidable through careful scheduling

Safe States

231

• Scheduler should only allow safe states
to happen in an execution
o When a thread tries to acquire() a resource,

the scheduler should block the thread, if
acquiring the resource leads to an unsafe
state, until this is no longer the case

o release() is always ok

Deadlock Avoidance

232

Deadlock Avoidance

233

How?

Deadlock Avoidance

234

For example, don’t schedule
two threads transfer(𝑎1, 𝑎2)
and transfer(𝑎3, 𝑎4) at the
same time unless
	𝑎1, 𝑎2	 ∩ 𝑎3, 𝑎4 = 	∅

Avoidance specified in Harmony

235

enforce no intersection
with active transfers

update scheduler state

keep track of which
accounts are active

Deadlock
Detection and

Recovery

• Keep track of allocation of resources to
threads

Deadlock Detection

237

ResourcesThreads

• Keep track of allocation of resources to
threads
• Keep track of which threads are trying to

acquire which resource

Deadlock Detection

238

ResourcesThreads

• Known as the Resource Allocation Graph
• Deadlock ≡ cycle in the graph

Deadlock Detection

239

ResourcesThreads

• Known as the Resource Allocation Graph
• Deadlock ≡ cycle in the graph

Deadlock Detection

240

ResourcesThreads

• Graph Reduction Algorithm:
o While there are nodes with no outgoing edges
- select one such node
- remove node and its incoming edges
o If the resulting graph empty (no nodes), then

no cycles
o No cycles ⟹ No deadlock

Finding Cycles

241

Deadlock Detection

242

ResourcesThreads

Deadlock Detection

243

ResourcesThreads

Deadlock Detection

244

ResourcesThreads

Deadlock Detection

245

ResourcesThreads

Deadlock Detection

246

ResourcesThreads

Deadlock Detection

247

ResourcesThreads

No more nodes can be removed, but graph is non-empty à
 cycle is present

• Deadlock detection is expensive
• When to run graph reduction?
o When a resource request cannot be granted?
o When a thread has been blocked for a certain

amount of time?
o Periodically?

Deadlock Detection

248

• Blue screen and reboot
o Can lose data / results of long computations
• Deny a request to remove cycle
o Programmer responsible for exception
• Kill processes until cycle is gone
o Can lose data / results of long computations
o Select processes that have been running shortest

amount of time
• Use transactions to access resources
o Abort and retry transaction if deadlock exists
o Requires roll-back or versioning of state

Deadlock Recovery Strategies

249

Actors

[Robbert van Renesse]

• An actor is a type of process
• Each actor has an incoming message queue
• No other shared state
• Actors communicate by “message passing”
o placing messages on message queues
• Supports modular concurrent programs
• Actors and message queues are abstractions

Actor Model

251

• Data structure owned by a “server actor”
• Client actors can send request messages to the server and receive response

messages if necessary
• Server actor awaits requests on its queue and executes one request at a time

è
o Mutual Exclusion (one request at a time)
o Progress (requests eventually get to the head of the queue)
o Fairness (requests are handled in FCFS order)

Mutual Exclusion with Actors

252

actor 3

actor 2

actor 1

• An actor can “wait” for a condition by
waiting for a specific message
• An actor can “notify” another actor by

sending it a message

Conditional Critical Sections with Actors

253

• Organize program with a Manager Actor and a collection of
Worker Actors

• Manager Actor sends work requests to the Worker Actors
• Worker Actors send completion requests to the Manager Actor

Parallel processing with Actors

254

head worker 3

worker 2

worker 5

worker 4

worker 1

Parallel processing example

255

• Organize program as a chain of actors
• For example, REST/HTTP server
o Network receive actor à HTTP parser actor
à REST request actor à Application actor
à REST response actor à HTTP response
actor à Network send actor

Pipeline Parallelism with Actors

256

actor 2actor 1 actor 3

automatic flow control (when actors run at different rates)
• with bounded buffer queues

Pipelining Example

257
Find Mersenne primes

• Native support in languages such as
Scala and Erlang
• ”blocking queues” in Python, Harmony,

Java
• Actor support libraries for Java, C, …

Actors also nicely generalize to distributed
systems!

Support for actors in programming
languages

258

• Doesn’t work well for “fine-grained”
synchronization
o overhead of message passing much higher

than lock/unlock
• Sending/receiving messages just to

access a data structure leads to
significant extra code

Actor disadvantages?

259

Barrier
Synchronization

260

• Set of processes run in rounds
• Must all complete a round before starting the next
• Popular in simulation, HPC, graph processing, model

checking…
o Lock-based synchronization reduces opportunities for

parallelism
o Barrier Synchronization supports scalable parallelism

Barrier Synchronization: the opposite
of mutual exclusion…

• Barrier(N): barrier for N threads
• bwait(): start the next round

Barrier abstraction

262

Example: dot product

263

Test program for barriers

264

work done before barrier

work done after barrier

Test program for barriers

265

work done before barrier

work done after barrier

no one can pass
barrier until all

reached the barrier

Barrier Specification, Attempt 1

266

State:
- required: #threads
- n: #threads that have

reached the barrier

Barrier Specification, Attempt 1

267

turnstile
State:
- required: #threads
- n: #threads that have

reached the barrier

Barrier Specification, Attempt 1

268

waiting area

State:
- required: #threads
- n: #threads that have

reached the barrier
turnstile

Barrier Specification, Attempt 1

269

Only works one round

State:
- required: #threads
- n: #threads that have

reached the barrier

Barrier Specification, Attempt 2

270

Barrier Specification, Attempt 2

271

Broken!

(if used more than once)

Barrier Specification, Attempt 3

272

Barrier Specification, Attempt 3

273

Works, but double

waiting is inefficient

Barrier Specification, final version

274

State:
- required: #threads
- n: #threads that have

reached the barrier
- color: allows re-use of

barrier. Flipped each round

Barrier Implementation

275

• Given is a resource of finite capacity
o Bus with N seats, say
• Resource must be used at full capacity
o Bus won’t go until it is full
• Resource must be completed emptied

before it can be re-used
o Everybody must get off at destination

before anybody can get back on the bus

Advanced Barrier Synchronization

276

• Given is a resource of finite capacity
o Bus with N seats, say
• Resource must be used at full capacity
o Bus won’t go until it is full
• Resource must be completed emptied

before it can be re-used
o Everybody must get off at destination

before anybody can get back on the bus

Advanced Barrier Synchronization

277

Typical Exam Question!

• enter(resource)
o must wait if resource is in use or if resource

has not yet been fully unloaded
o after that, must wait until resource is full
• exit(resource)
o any time

Interface

278

• Round: each time the resource gets used
• Three phases in each round:

1. Resource is loaded
2. Resource is used
3. Resource is unloaded
• Two waiting conditions:
o Wait until resource is fully unloaded
-Before starting to load the resource
o Wait until resource is fully loaded
-Before starting to use the resource

Rounds and Phases

279

Rollercoaster

280

JOE MCBRIDE / GETTY IMAGES

Interrupt
Safety

281

• When executing in user space, a device
interrupt is invisible to the user process
- State of user process is unaffected by the device interrupt

and its subsequent handling
- This is because contexts are switched back and forth
- So, the user space context is exactly restored to the state it

was in before the interrupt

Interrupt handling

282

• However, there are also “in-context”
interrupts:
o kernel code can be interrupted
o user code can handle “signals”
à Potential for race conditions

Interrupt handling

283

“Traps” in Harmony

284

invoke handler() at
some future time
Within the same thread!

(𝑡𝑟𝑎𝑝	 ≠ 𝑠𝑝𝑎𝑤𝑛)

check count == 1 in
the final state

But what now?

285

But what now?

286

Locks to the rescue?

287

Locks to the rescue?

288

Enabling/disabling interrupts

289

disable interrupts

enable interrupts

Interrupt-Safe Methods

290

disable interrupts

restore old interrupt level

Interrupt-safe AND Thread-safe?

291

Interrupt-safe AND Thread-safe?

292

wait for own interrupt

Interrupt-safe AND Thread-safe?

293

first disable interrupts

wait for own interrupt

Interrupt-safe AND Thread-safe?

294

first disable interrupts

then acquire a lock

wait for own interrupt

Interrupt-safe AND Thread-safe?

295

first disable interrupts

then acquire a lock

why 4?

wait for own interrupt

• pure system calls are interrupt-safe
o e.g. read(), write(), etc.
• functions that do not use global data are

interrupt-safe
o e.g. strlen(), strcpy(), etc.
• malloc() and free() are not interrupt-safe
• printf() is not interrupt-safe
• However, all these functions are thread-safe

Warning: very few C functions are
interrupt-safe

296

