
Examples of
Concurrent Programming
Exam Questions
Using Harmony

by Robbert van Renesse, Cornell University

2

1. This is not a race. Or is it?

Which of the following programs suffers from a data race? Write “Y” (Yes) or “N” (No) in the
box below each program.

a) b)

c)

d)

3

2. I’d rather be skating…

Lynah has a policy that does not allow skaters on the ice when their Zamboni is resurfacing
the ice. They have asked our help to enforce this. Below is a Harmony program that
simulates their Zamboni and the skaters.

V3
Zamboni is on the ice only here,

 in lines 16 and 17

This skater is on the ice only here,
in lines 27 and 28

You have been asked to analyze
the program without running it. In
particular, on the following page
there is a list of proposed
invariants (i.e., logical statements
that are always true after
initialization in any execution). You
have to say whether the statement
is always true, always false, or
neither (again, after initialization).

Reminder: False implies anything.
Therefore, the statement ”if 1 == 2
then 3 == 4” is an invariant
because it is always true.

Zamboni

4

Place one checkmark in each row in one of the three columns
(”neither” means sometimes True and sometimes False)

always
True

always
False

neither

a) if the Zamboni is on the ice (i.e., lines 16 and 17), then
zamboni_on_ice == True

b) if zamboni_on_ice == True, then the Zamboni is on the
ice

c) if the Zamboni is on the ice, then nskaters_on_ice == 0

d) zamboni_on_ice implies (nskaters_on_ice == 0)

e) (nskaters_on_ice == 0) implies zamboni_on_ice

f) if there is a skater on the ice (i.e., lines 27 and 28), then
nskaters_on_ice > 0

g) if there are 𝑁 skaters on the ice, then nskaters_on_ice
≤ 𝑁

h) if there are 𝑁 skaters on the ice, then nskaters_on_ice
≥ 𝑁

i) if nskaters_on_ice == 𝑁, then there are at least 𝑁
skaters on the ice

j) if nskaters_on_ice == 𝑁, then there are at most 𝑁
skaters on the ice

k) if lock2 is acquired by the Zamboni thread, then
professor RVR is unicycling on the moon wearing a top
hat

l) if lock2 is held, then zamboni_on_ice == False

m) if there is a skater on the ice, then lock1 is held

n) if there is a skater on the ice, then lock2 is held

o) if the Zamboni is on the ice, then lock1 is held

p) if the Zamboni is on the ice, then lock2 is held

q) there is at most one skater on the ice

5

3. I Need Some Privacy

There is a lot of demand for the Gates Zoom Booths, but only limited availability. A study of
the situation is ordered, and a programmer who has their degree from the renowned MITT
(Massachusetts Institute of Thread Technology) models the booths in Harmony as shown
below.

Lines 26-35 show N_STUDENTS student() threads being spawned, each of which chooses a
booth to enter. The code on the right shows the booth_enter() and booth_exit() functions,
each of which take a booth number (0 through N_BOOTHS – 1) as argument. The code
maintains an n_occupied variable that is stored in sequentially consistent memory, meaning
that load and store operations are atomic, and operations are not delayed. The statement in
Line 7 creates an array with N_BOOTHS elements. Each booth has a lock that protects access
to the booth so that only one student can enter at a time.

N_BOOTH
S

N_STUDENT
S FAILS?

1 3

2 1

2 2

2 3

3 2

Unfortunately, it was found that the code
sometimes fails. In particular, the invariant
in Line 10 is sometimes violated and
n_occupied is not always 0 when all
students threads have terminated. This
depends on the values of N_BOOTHS and
N_STUDENTS.

a) Fill in the table to the right with YES and
NO.

6

A graduate of Cornell CS 4410/5410 is hired to write a better model. Their program is shown below.
Indeed, it seems to work for a variety of choices for positive N_BOOTHS and N_STUDENTS.

The program maintains two variables per booth: a lock and a boolean that indicates whether
the booth is free. The program finds that all booths are free after all student threads are
finished. In order to understand the program better, you are tasked with determining if certain
properties always hold (i.e., invariant), never hold, or neither (i.e., sometimes true, sometimes
false).

(b) Answer the following questions for the case N_BOOTHS = 2 and N_STUDENTS = 3. Put one
checkmark in each row. (Carefully notice the indices to the booths variable below.)

Property Always Never Sometimes

In Line 14, booths[b].free == True

In Line 16, booths[0].free == False

In Line 21, booths[b].lock is acquired (held)

7

4. Race to the Finish

In a “Relay Race”, runners on a team take turns
running legs around a field. One arbitrary runner
of each team starts, carrying a baton. When the
runner completes the leg, they pass the baton to
another (arbitrary) runner in the team. This
continues until all runners on the team ran a leg.
The teams are ranked by the order in which the
last runners cross the finish line.

The code to the right models a relay race with
N_TEAMS teams and N_LEGS runners per team.
There are the following variables:
• batons: a lock for each team modeling a

baton
• legs: a counter per team keeping track of how

many runners have been running
• finish: a lock modeling the finish line
• rank: a list of teams in the order in which they

cross the finish line
• total: keeps track of the total number of

runners that have been running.
Line 3 states that both LOAD operations and STORE operations on variables legs, rank, and total are
atomic. (This does not imply that other operations such as increment are atomic.)

The main method is a thread that starts all the runners for all the teams. The teams are numbered 0
through N_TEAMS – 1. The method waits for all teams to finish in line 29, and then prints the total
number of runners that have run the relay race.
The runner method is a thread that takes the team identifier as argument. For each team, N_LEGS of
this method are spawned, for a total of N_TEAMS * N_LEGS threads. The thread first waits to acquire its
team’s baton. Then it increments both total and its team’s legs counter. The method stores whether
this was the last leg for the team in local boolean variable last. After releasing the baton, the runner tries
to cross the finish line if it is the last of their team. In Line 22, the method adds the team number to the
end of variable rank.

We wish we could tell you that this code is correct and always prints a number that equals N_TEAMS *
N_LEGS. Unfortunately, this turns out not to be the case. The program turns out to be able to print
various numbers. Let’s see if we can find out why.

Answer the questions on the following page.

(Rookie Road, Dec 12 2023)

8

Q Property Always Never Sometimes

1 Between Lines 16 and 17, legs[team] < N_LEGS

2 Between Lines 17 and 18, legs[team] < N_LEGS

3
Between Lines 15 and 19, multiple (more than
one) runners of the same team hold the baton
(lock) of the team

4 Between Lines 15 and 19, multiple runners of
different teams hold a baton (lock)

5 List rank contains duplicates

6 Between Lines 29 and 30, the length of list rank
is N_TEAMS

a) First, we want to see if some properties are invariant (always true) or not. The table below has a
list of properties. Put a checkmark (✓) in each row depending on whether the property always holds,
never holds, or neither (i.e., it holds sometimes but not always). Each row should have exactly one
checkmark.

b) The minimum and maximum value that the program prints appears to depend on N_TEAMS and
N_LEGS. Fill in the following table with the minimum and maximum values that can be printed (the
first row, in which there is only 1 team with 1 runner, is filled out as an example):

Q N_TEAMS N_LEGS MINIMUM MAXIMUM

1 1 1 1 1
2 6 1

3 1 5

4 2 3

5 3 2

c) Is it necessary to declare the variable legs as sequentially
consistent to prevent a data race? Answer YES or NO in the box to
the right.

9

5. European Bakery Lock

Locks are used to implement critical
sections in which only the thread holding
the lock can execute (mutual exclusion).
Sometimes it is useful to have some
“fairness” in that threads should enter
the critical section in their arrival order.
European bakeries have figured out how
to do this. When a customer enters the
bakery, they must take a numbered
ticket at the door, and then they must
wait until their number is on the big
display.

The code to the right demonstrates
various variations of this idea. A lock is
implemented as a record that contains
two (arbitrary precision) numbers: a
counter (displayed to all in the bakery),
and a dispenser (the ticket number given
to the next customer). Initially, both are
0 (Line 13). A customer acquires the lock
by calling one of the 3 acquire methods
and releases the lock by calling one of
the 3 release methods. The acquire
method fetches a ticket by loading
dispenser and incrementing it. The
method then loops until the ticket
number is equal to counter. The release
method increments counter.

This must be done while avoiding data races as data races lead to undefined behavior.

A data race happens when two or more threads simultaneously access a variable (i.e., one of the
counters), and at least one of those accesses writes to the variable. Data races can be avoided using
atomic operations---by definition, multiple atomic operations cannot overlap. For example, an atomic
LOAD and an atomic STORE cannot overlap and thus cannot cause a data race. However, an atomic
LOAD and a normal STORE can overlap and cause a data race. The code provides three types of atomic
operations: atomic_store, atomic_load, and fetch_and_increment. atomic_store(p, v) takes the
address of a variable p and a value v and atomically stores the value in the variable. atomic_load(p)
atomically loads the value of the variable pointed to by p and returns it. fetch_and_increment(p), in a
single atomic operation, increments the value stored at the variable pointed at by p and returns the old
value stored there.

10

The threads consistently use one of the 3 acquire methods to enter a critical section and one of the 3
release methods to leave a critical section (always with the same lock), and so there are 9 possible
combinations. In the “data race free” column, specify using a checkmark (✓) if the combination is
free of data races, and an X (✗) if the combination suffers from data races (and thus the behavior is
undefined). If you use an X, leave the other box blank (as it would be undefined). If, however, you
think the combination is free of data races, mark with a checkmark if you think the combination is
correct (implements mutual exclusion and progress). If not, enter an X. Missing and ambiguous
marks will be counted as wrong. Thus, a correct acquire/release combination should contain two
checkmarks.

Q acquire
method

release method data race free correct

1 acquire1 release1

2 acquire1 release2

3 acquire1 release3

4 acquire2 release1

5 acquire2 release2

6 acquire2 release3

7 acquire3 release1

8 acquire3 release2

9 acquire3 release3

11

6. To Lock or Not To Lock

Consider the following Harmony program:

Note that accu has sequential
consistency, which means that load and
store operations on it happen
atomically. Now answer the following
questions (there is no partial credit for
partial answers):

(a) After both threads T0 and T1 have terminated, what are the
possible values of accu? Enter one or more integer numbers or
enter ’none’ if you think one or both threads may never terminate

(b) Now suppose L and U are set to False. After both threads T0 and
T1 have terminated, what are the possible values of accu?

(c) Now suppose L is set to True and U is set to False. After both
threads T0 and T1 have terminated, what are the possible values
of accu?

12

7. Ithaca is One Lane Bridges

The Ithaca campus is home to various one-lane bridges. Cars can only go in one direction
(represented by 0 or 1) on such a bridge. The following program simulates 3 cars crossing in
direction 0 and 3 cars crossing in direction 1. Each car is represented by a thread. To enter the
bridge in direction d (0 or 1), the car must call bridge_enter(d), and to exit it must call
bridge_exit(d). MAX_CARS is the maximum number of cars allowed on the bridge at any time.
ncars[d] represents the number of cars on the bridge going in direction d. The following
invariants must hold for any number of cars trying to cross the bridge:

• 𝑛𝑐𝑎𝑟𝑠[0] = 0 ∨ 𝑛𝑐𝑎𝑟𝑠[1] = 0
• 0 ≤ 𝑛𝑐𝑎𝑟𝑠[0] + 𝑛𝑐𝑎𝑟𝑠[1] ≤ MAX_CARS

Also, if a car can enter the bridge, it should be allowed to. (The code cannot simply allow just
one car at a time on the bridge.)

13

In the following questions, “at line X” means “just before executing the statement at line X”.
Answer the following questions with ‘yes’, ‘no’, or ‘maybe’. For example, in the first question,
answer ‘yes’ if the statement is an invariant, ‘no’ if the negation of the statement is an
invariant, or ‘maybe’ if neither is the case. Assume that MAX CARS is 2 for all questions.

yes no maybe

(a) At line 11, 𝑛𝑐𝑎𝑟𝑠[𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛] < MAX_CARS

(b) At line 13, 𝑛𝑐𝑎𝑟𝑠[𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛] = 0

(c) At line 13, 𝑛𝑐𝑎𝑟𝑠 1 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 0

(d) At line 13, 𝑛𝑐𝑎𝑟𝑠[𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛] < MAX_CARS

(e) At line 18, 𝑛𝑐𝑎𝑟𝑠[1 – 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛] = 0

(f) In line 18, it would be correct to replace
notifyAll by notify

(g) In line 21, it would be correct to replace
notifyAll by notify

14

8. Off to the races

Below find 8 Harmony programs with two threads that either read or write the shared variable
x. The programs use one or two reader/writer locks. For each of the programs, indicate in the
table whether the program may suffer a data race and/or a deadlock.

V1 V2 V3

V4 V5

// write x // write x // read x

// write x // write x

15

Fill in the following table with “Y” (Yes) or “N” (No):

V1 V2 V3 V4 V5 V6 V7 V8

Has a data race

May deadlock

(there should be a Y or N in each of the 16 boxes above)

V6 V7

V8

// write x // write x

// write x

16

9. What a ride it has been!

Given is a rollercoaster with a single car. Safety precautions require the following:
• each ride requires that all seats on the car are filled. That is, partially filled cars are not allowed to ride
• after a ride, the car must completely empty out before new riders are allowed to enter the car
Below find an implementation of a rollercoaster. RollerCoaster(N) returns the initial state of a rollercoaster
with N seats to a car. enter(b) takes a pointer b to a rollercoaster variable. A thread that calls enter(b)
should block until 1) all previous riders have left the car and 2) the car has filled up again. After “doing the
ride”, the thread calls exit(b).

To the right is a simple test program for the
rollercoaster. It create a rollercoaster
variable with 3 seats in the car. It then
creates 3x4 = 12 rider threads that each try
to get a ride. Each rider only tries to ride
the rollercoaster once.

17

Place one checkmark in each row in one of the three columns
(”neither” means sometimes True and sometimes False)

always
True

always
False

neither

a) if a thread is executing at line 38 (at the “ride” label),
then there are at most N threads executing at line 38

b) if a thread is executing at line 38 (at the “ride” label),
then rc.entered = N

c) if a thread is executing at line 38 (at the “ride” label),
then rc.left = 0

d) after all threads are done (have terminated), rc.entered
= 0

e) after all threads are done (have terminated), rc.left = N

f) 0 < 𝑟𝑐. 𝑙𝑒𝑓𝑡 < N ⇒ (𝑟𝑐. 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 = N)

g) 𝑟𝑐. 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 𝑟𝑐. 𝑙𝑒𝑓𝑡 > 0

h) 𝑟𝑐. 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 𝑟𝑐. 𝑙𝑒𝑓𝑡 = N

i) 𝑟𝑐. 𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 𝑟𝑐. 𝑙𝑒𝑓𝑡 < 2N

j) all threads eventually terminate

k) if Line 41 is changed to spawn 10 threads exactly, then
all threads eventually terminate

Place one checkmark in each row in one of the two columns True False

l) it’s ok to replace notifyAll() in Line 18 by notify()

m) it’s ok to replace notifyAll() in Line 26 by notify()

Fill in the following tables.

10. Playing a Waiting Game

Professor W. W. Walker at Worwell University runs a game design program. In it they form
teams of 3 students from across campus. Each team has 1 illustrator, 1 musician, and 1
hacker (no disrespect intended). As students sign up, Professor WWW creates teams as
soon as possible. There is a maximum number of teams in the program. As the program is
incredibly popular, Professor WWW never has to worry about not being able to form teams.
Below find a Harmony model of team forming:

18

spawn all illustrators, musicians, and hackers

check that each
illustrator, musician,
and hacker is in exactly
one team in the end

the global variables consist of a lock, a
Mesa condition variable, a FIFO list each
for illustrators and musicians, and a set of
matched teams

a hacker waits for at
least one illustrator
and one musician to
line up

match consists of the hacker
along with the first musician
& illustrator on the ready
lists.
(‘|’ is the union operator.)
illustrators and musicians
line up and, if both lines are
non-empty, notify all hackers

19

Note that there is an asymmetry in the Harmony program: hackers wait for musicians and
illustrators, while musicians and illustrators notify hackers. Answer the following questions
about this Harmony program.

True False

a) The program is free of data races

b) All threads are guaranteed to terminate eventually

c) If we replace notifyAll by notify in Line 25, some threads may
never terminate

d) If we replace the if statement in Line 24 by “if True”, all threads
are guaranteed to terminate eventually

e) Right before Line 15, it is guaranteed that there is at least one
musician and one illustrator on the respective ready lists

f) Right before Line 21, it is guaranteed that both ready lists will be
empty

g) In Line 13, it’s ok to replace “while” by “if” assuming that there
are no “spurious wakeups” (i.e., wait() only returns if notified)

h) It is ok (or even better) to replace “or” by “and” in the while
condition in Line 13.

i) If we didn’t care about busy waiting, it would be ok to replace
the wait() statement in Line 14 by “release(?mutex);
acquire(?mutex)”

j) If the program spawned fewer musicians than hackers, then
some threads would never terminate

k) The “del” statements that delete the first musician and
illustrator from the respective ready list are there just to reduce
memory usage and can be safely removed

11. RVR Really Needs a Haircut

RVR occasionally (not often enough) gets his hair cut at Big Red Barber Shop in Collegetown.
A typically barbershop has a number of barbers (and the same number of barber chairs) and
a waiting area with some seats. Customers periodically have their hair cut until, for some
reason, they no longer need to get their hair cut. However, if they get to the barbershop and
all waiting seats are taken, they skip the cut. Below find a model of a barbershop with
NBARBERS barbers, NSEATS waiting seats, and NCUSTOMERS customers using a lock and
two Mesa condition variables.

20

Each customer has a unique identifier. The
model maintains two sets of customer
identifiers: customers_waiting, the set of
customers waiting for their hair to be cut, and
customers_ready, the set of customers who
just had their hair cut but haven’t left the
shop yet.

A customer checks to see if there are
available waiting seats and, if so, takes one of
the waiting seats. (‘|’ is the union operator.).
The customer also notifies a barber. The
customer then waits until their hair is cut.

A barber, in an eternal loop, waits for a customer and cuts their hair. Cutting hair takes some
time. In the code above, a barber waits until there is at least one customer waiting, then
chooses one of the customers non-deterministically, cuts their hair, and adds the customer
to the customer_ready set. The barber finally notifies all customers.

21

Answer the following questions:

True False

a) The program is free of data races

b) Deadlock is possible

c) To prevent deadlock, it is important that a barber releases the
lock (in Line 21) before cutting hair and re-acquire the lock (in
Line 25) afterwards

d) It is possible for 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑤𝑎𝑖𝑡𝑖𝑛𝑔 ∩ 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑟𝑒𝑎𝑑𝑦 to be
non-empty, i.e., some customer identifier may be in both sets

e) Right after acquiring the lock in Line 33, it is guaranteed that id is
neither in 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑤𝑎𝑖𝑡𝑖𝑛𝑔 nor in 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑟𝑒𝑎𝑑𝑦

f) Right after releasing the lock in Line 43, it is guaranteed that id is
neither in 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑤𝑎𝑖𝑡𝑖𝑛𝑔 nor in 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑟𝑒𝑎𝑑𝑦

g) Right after notifying a barber in Line 37, it may be that the barber
runs next and adds id to 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑟𝑒𝑎𝑑𝑦 so the wait call in Line
41 is not executed.

h) Right before executing Line 19, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑟𝑒𝑎𝑑𝑦 is guaranteed
to be empty

i) Right before executing Line 19, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑟𝑒𝑎𝑑𝑦 is guaranteed
to be non-empty

j) Right before executing Line 26, 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟_𝑟𝑒𝑎𝑑𝑦 is guaranteed
to be empty

k) It is ok to replace notifyAll by notify in Line 28.

22

The code to the right is how one
might test the ClubHouse code
in Question q.3. You do not need
to look at this code unless you
think it might help you.

The code models a clubhouse
that can accommodate at most 2
people at a time, and three clubs
of 3, 3, and 1 members
respectively.

The code checks that the
capacity of the clubhouse is not
exceeded and that there cannot
be members of multiple clubs in
the clubhouse simultaneously.

23

12. Join the Club

Each of the implementations keeps track of the state of the clubhouse. The implementations have the
following state in common:

 mutex: a lock that protects the state under concurrent access
 capacity: the maximum number of students allowed in the clubhouse
 occupancy: the current number of students in the clubhouse
 club: the club the students belong to (if there are any students in the clubhouse)

a) Put ✓ or ✗ in each of the following boxes (one box per property and implementation):

A
On this and the following page you
find four implementations (A, B, C,
and D) of a “ClubHouse” abstraction
that try to model such a clubhouse.
Students are modeled as threads.
The interface has three methods:

ClubHouse(n): returns the initial state
of a clubhouse with a maximum
occupancy of n (n > 1) students.

enter(ch, club): ch points to a
clubhouse variable, and club is a
unique identifier for some club. This
method models a member of the given
club trying to enter the clubhouse. The
method waits until the conditions
above are met but must not stop a
student if they can enter.

exit(ch): this models a student leaving
the clubhouse.

Cornell University has a clubhouse that is shared by several clubs. Fire codes require that the clubhouse
cannot be occupied by more than a certain maximum number of students. To enter the clubhouse, a student
must be a member of a club. There are no students that are members of more than one club. Moreover, the
clubs agreed that the clubhouse cannot be used by more than one club at a time. This means that there can
never be two students of different clubs in the clubhouse. Every student in the clubhouse eventually exits.

Property A B C D

Does not allow students of different clubs to enter at the same time

Does not allow more students to enter than the capacity allows

Does not prevent students from entering if they are allowed into the
clubhouse

Does not use busy waiting

(Waiting on a lock or on a condition variable is not considered busy waiting.)

24

B

C

Property B

It’s ok to remove the if
statement in line 25 and
always notifyAll ch->conflict

It’s ok to replace notifyAll in
line 26 with notify

It’s better to replace
notifyAll in line 27 with
notify

b) Answer the following questions
using ✓ or ✗ only for implementation
B.

D

Did you fill out
the table in

the top right?

25

13. Running out of Steam
Below, on the left, find a Harmony program that models a “bounded resource.” A bounded resource has
a certain number of instances, called its “capacity.” A resource is modeled by a “resource variable”
initialized using Resource(capacity). Given a pointer r to a resource variable, the method alloc(r, n)
allocates n instances of the resource. The method waits until n instances are available. The method
free(r, n) releases n previously allocated instances of the resource.

The code on the right models two resources x and y by resource variables rx and ry, as well as two
threads app1() and app2() that allocate resources. There are N_X instances of resource x and N_Y
instances of resource y. app1() first allocates N_X_1 instances of resource x and then N_Y_1 instances
of resource y. app2(), instead, allocates N_Y_2 instances of resource y first and then N_X_2 instances of
resource x. Both threads immediately release the resources they acquired.

Unfortunately, for certain values of these 6 constants, deadlock can occur.

q.1) Fill in the following table using ✓ or ✗ in each box:

N_X N_Y N_X_1 N_Y_1 N_X_2 N_Y_2 deadlock
possible?

1 1 1 1 1 1

2 2 1 1 1 1

2 2 2 2 2 2

2 2 1 2 1 2

2 2 1 2 2 1

26

14. The Dining Philosophers Return

The Dining Philosophers are dining again. Below find an (incomplete) program for the Dining
Philosophers. The state of each fork is represented by a boolean. False means the fork is
available; True means the fork is taken. The code uses a Mesa monitor approach.

Each diner is a thread
that first determines the
identifiers of its left and
right forks. Then it runs
a loop until it chooses
False. In the loop body,
the thread first picks up
the forks, then dines,
then replaces the forks.

A fork should only be picked up
when it is not already taken.

A fork can only be replaced if it’s
taken. After doing so, wake up a
thread waiting for the fork, if any.

The state consists of a monitor
lock, the status of each fork, and
a condition variable for each fork.

to be replaced

27

Fill in the following table with “Y” (Yes) or “N” (No): V1 V2 V3 V4 V5

Assertion may fail

May deadlock

(there should be a Y or N in each of the 10 boxes above)

V1 V2

V3 V4

V5

The method get_forks(left, right) must be completed. Below find five different ways of
implementing get_forks(). Some are correct; some are not. You are to determine if one of the
assertions on the previous page might fail and if the implementation might deadlock if the
assertions are ignored.

28

15. Hit the gas!

The following Harmony program uses a Mesa monitor approach to simulate carbon and hydrogen
atoms (each modeled using threads) combining to form methane (CH4) molecules. Each methane
molecule consists of 4 hydrogen atoms and 1 carbon atom.

The state consists of the
number of hydrogen and
carbon threads waiting to be
combined, and the remaining
number of such threads that
have been matched to form
methane.

Wait until a hydrogen atom has
been made part of a methane
molecule.

Wait until a carbon atom has been
made part of a methane molecule.

When there’s a match, notify all
who might be able to continue.

When there’s a match,
notify hydrogen threads
only.

29

Place one checkmark in each row in one of the three columns
(”neither” means sometimes True and sometimes False)

always
True

always
False

neither

a) all threads eventually terminate

b) if all threads have terminated, then 𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛
and 𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝐶𝑎𝑟𝑏𝑜𝑛 are both 0

c) if all threads have terminated, then 𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛
and 𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐶𝑎𝑟𝑏𝑜𝑛 are both larger than 0

d) If no lock is held, then (𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 < 4 or
𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝐶𝑎𝑟𝑏𝑜𝑛 = 0)

e) If no lock is held, then (𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 < 4 or
𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐶𝑎𝑟𝑏𝑜𝑛 = 0)

f) when a thread resumes right after the wait() call in line
21, 𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 is larger than 0

g) if, in line 4, constant nHydrogen is set to a value larger
than 4 times nCarbon, then some hydrogen threads will
never terminate

h) if no lock is held, then 4 × 𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 =
 𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐶𝑎𝑟𝑏𝑜𝑛

Place one checkmark in each row in one of the two columns True False

i) it’s ok to replace notifyAll() in Line 16 by notify()

j) it’s ok to replace notifyAll() in Line 16 by 3 calls to
notify() on the same condition variable

k) it’s ok to replace notifyAll() in Line 29 by notify()

l) it’s ok to replace notifyAll() in Line 29 by 3 calls to
notify() on the same condition variable

Fill in the following tables.

30

16. Chez Platopus

The famous philosopher Platopus lives in the underwater world of the multipi. A multipus is an
elegant creature with one or more arms. E.g., an octopus has eight arms, while a pentopus has
only 5. Multipi love to eat escargot (snails), but they require a fork for each arm before they can
eat. Platopus decides to open an escargot place. There’s a single large communal table with a
glass of forks in the center. When a multipus arrives at the restaurant, they go to the table,
eagerly take forks from the glass until they have a fork for each arm (waiting if the glass is empty),
eat all escargot they can eat (and there’s an infinite supply of those), and then replace the forks.
The Harmony program below models the restaurant.

The parameters. NFORKS is the number of
forks initially in the glass. In this scenario there
are three multipi: two octopi and one
pentopus, and 18 forks in the glass initially.

Here are the variables. The integer avail keeps
track of how many forks there are left in the
glass.

This code waits until there’s at least one fork in
the glass and then takes it.

This code replaces a fork in the glass and
notifies the multipi that are waiting for a fork.

A multipus with n arms eagerly takes n forks,
one at a time, and then eats. After eating, they
replace the forks and leave.

Here the various multipi get spawned.

31

Initially, Platopus didn’t think things through very carefully. They noticed that sometimes
there are a bunch of platipi at the table, each holding some but not enough forks, while the
glass is empty. Platopus called this idea “deadlock” and spent the rest of their highly
influential life trying to figure out under what circumstances deadlock may occur.

a) Fill in the table below, putting a checkmark in each row in one of the columns:
Always: deadlock is unavoidable. It always occurs.
Never: deadlock cannot happen.
Sometimes: deadlock may or may not occur depending on circumstances

NFORKS MULTIPI Always Never Sometimes

18 [8, 5, 8]

15 [8, 8]

21 [8, 8, 8]

5 [2, 2, 2, 2]

2 [3, 1]

Now answer the following questions about the code:

True False

b) Just after executing Line 11, it is invariant that avail = 0

c) Just before executing Line 14, it is invariant that avail > 0

d) Just before executing Line 19, it is invariant that avail < NFORKS

e) Line 20 can be replaced with notify(?cond) with no ill effect (i.e.,
if deadlocks were not possible, they are still not possible)

f) Line 26 is a “critical section”. That is, it is impossible for
multiple multipi to eat at the same time

32

17. The Water is Wide

The Harmony code below models a ferry between locations 0 and 1 (representing the east side and the
west side of a river respectively). The ferry can carry a maximum of CAPACITY passengers.

33

The ferry starts out on the east side (0) and can only run when it’s filled up with passengers.
There are a total of EAST passengers on the east side and WEST passengers on the west side.
The passengers are spawned in Lines 49-60 in the box on the right-hand side of the page. Each
passenger embarks on either the east or west side and disembarks on the other. For the code
to work, both EAST and WEST must be a multiple of CAPACITY, and either EAST = WEST or EAST
= WEST + CAPACITY.

The ferry code uses the following variables:
• mutex: a global lock
• location: the current location of the ferry (0 is east side, 1 is west side)
• avail: a condition variable for each side, to wait until ferry is ready for boarding
• full: a condition variable for each side, to wait until the ferry filled up and can sail
• entered: the number of passengers that have boarded the ferry
• left: the number of passengers that have disembarked

Answer the following questions about the code: True False

a) The number of threads executing in Line 54 is always either 0 or
CAPACITY

b) If some thread is executing at Line 54, then entered = CAPACITY

c) If some thread is executing at Line 54, then left < CAPACITY

d) If all threads terminate, then in the end left = 0

e) The following predicate is invariant after initialization:
𝑒𝑛𝑡𝑒𝑟𝑒𝑑 + 𝑙𝑒𝑓𝑡 ≥ CAPACITY

f) The notifyAll call in Line 25 is inefficient and can be replaced
with just notify

g) The notifyAll call in Line 35 is inefficient and can be replaced
with just notify

h) Using the constants as given, this program will eventually
terminate (all threads will eventually terminate)

34

18. Cross Lock

A ”cross lock” is a bit like a reader/writer lock, but it is more symmetric. As in reader/writer
locks, there are two kinds of thread. The kinds are 0 and 1. Multiple threads can acquire the
lock, but there can never be more than one of each kind that has simultaneously acquired the
lock. So, it’s ok for one thread of kind 0 and three threads of kind 1 to have the lock
simultaneously, but it’s not ok for two threads of kind 0 and two threads of kind 1 to have the
lock simultaneously. Below find a specification and an implementation.

Specification

Implementation

Method CrossLock()
returns the initial
value of a cross lock.

Method cl_acquire()
takes a pointer to a
cross lock variable
and a kind as
arguments. It blocks
if it is not currently
possible to acquire
the lock for that kind
of thread.

Method cl_release()
takes the same two
arguments. It
releases the lock
once for that kind of
thread, possibly
allowing other
threads to acquire
the lock.

The implementation
uses Mesa condition
variables, one for
each kind.

Note that the
expression “1 – kind”
computes “the other
kind”: 0 becomes 1
and 1 becomes 0.

35

To the right find a test program. It starts four threads of
each kind. Each thread tries to acquire and release the
lock zero or more times. There are 4 threads of kind 0
and 4 threads of kind 1 configured in this test program.
The variable in_cs keeps track of how many threads of
each kind are in the “critical section” (Lines 15-17). If a
thread of kind 0 is in the critical section, then in_cs[0]
must be at least 1. However, this critical section allows
multiple threads of different kinds to be in the critical
section constrained by the rules described on the
previous page.

One of your tasks is to find suitable invariants for this
test program for Line 9. Indicate in the table below with
✓ if the predicate is invariant and with✗ if not.

a) (in_cs[0] > 0) or (in_cs[1] > 0)

b) (in_cs[0] >= 0) and (in_cs[1] >= 0)

c) (in_cs[0] in { 0, 1 }) and (in_cs[1] in { 0, 1 })

d) (in_cs[0] in { 0, 1 }) or (in_cs[1] in { 0, 1 })

e) (in_cs[0] < in_cs[1]) or (in_cs[0] >
in_cs[1])

Answer the following questions about the cross lock implementation with ✓ or ✗:

f) Just before Line 17 (after the while loop finishes), c->count[1 – kind] must
be either 0 or 1.

g) Between Line 21 and 22 (just after acquiring the mutex), c->count[kind]
must be larger than 0.

h) It is correct to replace Lines 23 and 24 with notify(?c->cond[kind]), that is,
to remove Line 23.

i) There is no disadvantage to replacing notifyAll() in Line 26 with just
notify().

36

19. Dining Western Philosophers
A group of N western philosophers get together to eat at a hip local restaurant. Western philosophers
eat using a knife and a fork. In the center of their table is a mug with the same number of knives and
forks. Left-handed philosophers first take a fork and then a knife before they can eat; right-handed
philosophers first take a knife and then a fork. If the utensil they are looking for is not available, they
wait. Once a philosopher has a knife and a fork, they eat and replace the utensils. Each philosopher
eats zero or more times before they leave the restaurant.

N_LEFT N_RIGHT N_PAIRS deadlock
possible?

3 3 6

3 3 4

3 3 3

3 3 1

3 0 3

3 0 1

2 3 4

2 3 3

2 3 2

2 3 1

The code on the left models left-handed and right-handed
western philosophers in Harmony. The variable nforks keeps
track of how many forks are left in the mug, while nknives
keeps track of the number of knives in the mug.

The method take(utensil) waits for a utensil of a particular
type to be available and then takes one. The method
replace(utensil) replaces a utensil of a particular type.

Each of the philosophers eats zero of more times.

For particular combinations of N_LEFT,
N_RIGHT, and N_PAIRS deadlock may or
may not be possible. In the table to the
right, use ✓ to indicate that deadlock is
possible, and ✗ to indicate that deadlock
is not possible.

	Slide 1: Examples of Concurrent Programming Exam Questions Using Harmony
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

