Examples of

Concurrent Programming
Exam Questions

Using Harmony

by Robbert van Renesse, Cornell University

1. Thisis not arace. Orisit?

Which of the following programs suffers from a data race? Write “Y” (Yes) or “N” (No) in the
box below each program.

10

11

12

13

14

15

16

1T

18

19

1 r =1
2 y:O
3 z=20
4

5 def f():
6 r =2
7

8 def ¢():
9 Y=

10

1 spawn f()
12 spawn ¢()

import synch

lock = synch.Lock()

=1
y=20
z=0
def f():

synch.acquire(?lock)
T =2
synch.release(?lock)

def ¢():
synch.acquire(?lock)
y==z
synch.release(?lock)

spawn f()
spawn g()

c)

10

11

12

13

14

15

16

17

1 TN
2 y:0
3 z=0
5 def f():
6 y=2
T

8 def g():
9 Z =T

10

11 spawn f()
12 spawn ¢()

b)

import synch

lock = synch.Lock()

=1
y=20
z=0
def f():

synch.acquire(?lock)
r =2
synch.release(?lock)

def g():
y==z

spawn £()
spawn g()

d)

2. I’d rather be skating...

Lynah has a policy that does not allow skaters on theice when their Zamboni is resurfacing
the ice. They have asked our help to enforce this. Below is a Harmony program that

simulates their Zamboni and the skaters.
You have been asked to analyze

the program without runningit. In
particular, on the following page
thereis a list of proposed
invariants (i.e., logical statements
that are always true after
initialization in any execution). You
have to say whether the statement
is always true, always false, or
neither (again, afterinitialization).

1 from synch import Lock, acquire, release
3 sequential zamboni_on_ice, nskaters_on_ice
5 const NSKATERS = 10

7 zamboni_on_ice = False
8 nskaters_on_ice = 0

o lockl = Lock()

10 lock2 = Lock()

il Reminder: False implies anything.
12 def zamboni(): Therefore, the statement ”if 1 ==
13 while choose { False, True }: then 3 == 4” is an invariant

1 acquire(?lock1) because itis always true.

15 zamboni_on_ice = True

16 # Zamboni goes onto the ice, Zamboniis on the ice only here,

17 # resurfaces, and leaves the ice e e

18 zamboni_on_ice = False

19 release(?lockl)

20

21 def skater():

22 acquire(?lock2)

23 if nskaters_on_ice == 0:

24 acquire(?lockl)

26 nskaters_on_ice +=1

26 release(?lock?2)

27 # Skater goes onto the ice, This skater is on the ice only here,
28 # skates, and leaves the ice inlines 27 and 28
20 acquire(?lock?2)

30 nskaters_on_ice —=1

31 if nskaters_on_ice ==

32 release(?lockl)

a3 release(?lock2)

34

35 spawn zamboni()

a6 for i in { 1 .. NSKATERS }:
a7 spawn skater ()

Place one checkmark in each row in one of the three columns
(”"neither” means sometimes True and sometimes False)

always
True

always
False

neither

a) | ifthe Zamboniisontheice (i.e., lines 16 and 17), then
zamboni_on_ice ==True

b) if zamboni_on_ice ==True, then the Zamboniis on the
ice

c) if the Zamboniis on the ice, then nskaters on ice ==

d) | zamboni_on_ice implies (nskaters_on_ice ==0)

e) | (nskaters_on_ice ==0) implies zamboni_on_ice

f) if there is a skateron the ice (i.e., lines 27 and 28), then
nskaters_on_ice >0

g) if there are N skaters on the ice, then nskaters_on_ice
<N

h) | ifthereare N skaters onthe ice, then nskaters_on_ice
>N

i) if nskaters_on_ice == N, then there are at least N
skaters on the ice

) if nskaters_on_ice == N, then there are at most N
skaters on the ice

k) | iflock2is acquired by the Zambonithread, then
professor RVR is unicycling on the moon wearing a top
hat

1) if lock2 is held, then zamboni_on_ice == False

m) | ifthereis a skateronthe ice, then lock? is held

n) | ifthereis a skaterontheice, then lock2 is held

o) | ifthe Zamboniis ontheice, then lock7 is held

p) if the Zamboniis on the ice, then lock2 is held

q) | thereis atmostone skater on theice

3. I Need Some Privacy

There is a lot of demand for the Gates Zoom Booths, but only limited availability. A study of
the situation is ordered, and a programmer who has their degree from the renowned MITT
(Massachusetts Institute of Thread Technology) models the booths in Harmony as shown

1 from synch import Lock, acquire, release
2

3 sequential n_occupied # loadéistore are atomic

const N_BOOTHS = 2

w

7 booths = [Booth(),] ¥ N.BOOTHS # list of booths
8 n_occupied = 0 # number of occupied booths

10 invariant 0 <= n_occupied <= N_BOOTHS

11 finally n_occupied ==

12 26 const N_STUDENTS = 3

135 def Booth(): 27

14 result = { .lock: Lock() } 28 def student():

15 29 let b = choose { 0 .. N.BOOTHS -1 }:
16 def booth_enter(b): 30 booth_enter(b)

17 acquire(?booths|b].lock) 31 # zoom with bff

18 n_occupied = n_occupied + 1 32 booth_exit(b)

19 33

20 def booth_exit(b): ss for ¢ in { 1 .. N.STUDENTS }:
21 n_occupied = n_occupied — 1 35 spawn student()

22 release(?booths[b].lock) I

Lines 26-35 show N_STUDENTS student() threads being spawned, each of which chooses a
booth to enter. The code on the right shows the booth_enter() and booth_exit() functions,
each of which take a booth number (0 through N_BOOTHS - 1) as argument. The code
maintains an n_occupied variable thatis stored in sequentially consistent memory, meaning
that load and store operations are atomic, and operations are not delayed. The statementin
Line 7 creates an array with N_BOOTHS elements. Each booth has a lock that protects access
to the booth so that only one student can enter at a time.

Unfortunately, it was found that the code N_BOOTH N_STUDENT FAILS?
sometimes fails. In particular, the invariant S S
in Line 10 is sometimes violated and . 3
n_occupied is not always 0 when all
students threads have terminated. This 5 1
depends on the values of N_BOOTHS and
N_STUDENTS.
- 2 2
a) Fillin the table to the right with YES and
NO. 2 3

A graduate of CornellCS 4410/5410 is hired to write a better model. Their program is shown below.
Indeed, it seems to work for a variety of choices for positive N_BOOTHS and N_STUDENTS.

10

11

12

13

14

15

16

17

18

19

20

21

22

from synch import Lock, acquire, release

const N_BOOTHS = 2

booths = [Booth(),| * N.BOOTHS # list of booths

finally all(booths[b].free for b in { 0 .. N.BOOTHS - 1 })

def Booth():
result = { .lock: Lock(), .free: True }

def booth_enter(b): 26
acquire(?booths[b].lock) 27

... 28
booths|b].free = False 20

... 30

31

def booth_exit(b): 32
... 33
booths|b].free = True 34
4 "

const N_STUDENTS = 3

def student():
let b = choose { 0 .. N.BOOTHS - 1 }:
booth enter(b)
zoom with bff
booth exit(b)

for i in { 1 .. N_.STUDENTS }:
spawn student()

release(?booths[b].lock)

The program maintains two variables per booth: a lock and a boolean that indicates whether
the booth is free. The program finds that all booths are free after all studentthreads are
finished. In order to understand the program better, you are tasked with determining if certain
properties always hold (i.e., invariant), never hold, or neither (i.e., sometimes true, sometimes
false).

(b) Answer the following questions for the case N_BOOTHS =2 and N_STUDENTS = 3. Put one
checkmark in each row. (Carefully notice the indices to the booths variable below.)

Property

Always Never Sometimes

In Line 14, booths[b].free ==True

In Line 16, booths[0].free == False

In Line 21, booths[b].lockis acquired (held)

4. Race to the Finish

1 from synch import *
3 sequential legs, rank, total

5 const N_TEAMS = 6
const N_.LEGS = 5

batons = [Lock(), | * N_.TEAMS # lock per team
legs = [0,] * N_.TEAMS # counter per team
10 finish = Lock() # lock for finish line

© o N o

(Rookie Road, Dec 122023) '+ rank =[] # ranking of teams
12 total = 0 # total number of legs run
In a “Relay Race”, runners on ateam take turns b
running legs around a field. One arbitrary runner B def runner(team):
of each team starts, carrying a baton. Whenthe . acquire(?batons[team))
runner completes the leg, they pass the batonto |, total = total + 1
another (arbitrary) runner in the team. This - legs[team] = legs[team] + 1
continues untilallrunners on the teamran aleg. ;s var last = legs[team] >= N_LEGS
The teams are ranked by the order in which the 19 release(?batons[team))
last runners cross the finish line. 20 if last:
21 acquire(?finish)

The code to the right models a relay race with 9o rank += [team,)
N_TEAMS teams and N_LEGS runners perteam. ., release(?finish)
There are the following variables: 24
* batons: alock foreach team modeling a > def main():

baton 26 for team in { 0 .. N_.TEAMS — 1 }
* legs: a counter per team keeping track of how 27 for _in {1 .. N.LEGS }:

many runners have been running 28 spawn runner (team)
* finish: a lock modeling the finish line 29 await len(rank) == N_TEAMS
* rank: alist of teams in the orderin which they s print(total)

cross the finish line 1
* total: keeps track of the total number of 82 spawn main()

runners that have been running.

Line 3 states that both LOAD operations and STORE operations on variables legs, rank, and total are
atomic. (This does not imply that other operations such as increment are atomic.)

The main method is a thread that starts all the runners forall the teams. Theteams are numbered 0
through N_TEAMS - 1. The method waits for all teams to finish in line 29, and then prints the total
number of runners that have run the relayrace.

The runner method is a thread that takes the team identifier as argument. For each team, N_LEGS of
this method are spawned, for atotal of N_TEAMS * N_LEGS threads. Thethread firstwaits to acquire its
team’s baton. Then itincrements both total and its team’s legs counter. The method stores whether
this was the last leg for the teamin local boolean variable last. After releasing the baton, the runnertries
to cross thefinish line if it is the last of their team. In Line 22, the method adds the team number to the
end of variable rank.

We wish we could tellyou that this code is correct and always prints a number thatequals N_TEAMS *
N_LEGS. Unfortunately, this turns out notto be the case. The program turns outto be able to print
various numbers. Let’s see if we can find out why.

Answer the questions on the following page.

a) First, we want to see if some properties are invariant (always true) or not. The table belowhas a
list of properties. Puta checkmark (v) in each row depending on whether the property always holds,

never holds, or neither (i.e., it holds sometimes but not always). Each row should have exactly one
checkmark.

Q Property Always Never Sometimes

1 | Between Lines 16 and 17, legs[team] < N_LEGS

2 | Between Lines 17 and 18, legs[team] < N_LEGS

Between Lines 15 and 19, multiple (more than
3 | one) runners of the same team hold the baton
(lock) of the team

Between Lines 15 and 19, multiple runners of
different teams hold a baton (lock)

5 | Listrank contains duplicates

Between Lines 29 and 30, the length of list rank
is N_TEAMS

b) The minimum and maximum value that the program prints appears to depend on N_TEAMS and
N_LEGS. Fillin the following table with the minimum and maximum values that can be printed (the
first row, in which there is only 1 team with 1 runner, is filled out as an example):

Q| N_TEAMS N_LEGS MINIMUM MAXIMUM
1 1 1 1 1

2 6 1

3 1 5

4 2 3

5 3 2

c) Isitnecessary to declare the variable legs as sequentially
consistent to prevent a data race? Answer YES or NO in the box to
the right.

5. European Bakery Lock

ok

Locks are used to implement critical
sections in which only the thread holding
the lock can execute (mutual exclusion).
Sometimes itis useful to have some
“faimess” in that threads should enter
the critical section in their arrival order.
European bakeries have figured out how
to do this. When a customer enters the
bakery, they musttake a numbered
ticket at the door, and then they must
wait until their number is on the big
display.

The code to the right demonstrates
various variations of this idea. A lock s
implemented as arecord that contains
two (arbitrary precision) numbers: a
counter (displayed to all in the bakery),
and a dispenser (the ticket number given
to the next customer). Initially, both are
0 (Line 13). A customer acquires the lock
by calling one of the 3 acquire methods
and releases the lock by calling one of
the 3release methods. The acquire
method fetches a ticket by loading
dispenser and incrementing it. The
method then loops until the ticket
number is equal to counter. The release
method increments counter.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

def fetch and increment(p) returns result:
atomically:
result = p
Ip +=1

def atomic_load(p) returns result:
atomically result = Ip

def atomic_store(p, v):
atomically !p = v

def Lock():
result = { .counter: 0, .dispenser: 0 }

def acquirel(lk):
let my_ticket = fetch_and increment(?lk— dispenser):
while atomic_load(?lk— counter) != my_ticket:
pass

def acquire2(lk):
let my_ticket = atomic_load(?lk— dispenser):
atomic_store(?lk— dispenser, my_ticket + 1)
while atomic_load(?lk— counter) != my_ticket:
pass

def acquire3(lk):
let my_ticket = fetch_and increment(?lk— dispenser):
while lk— counter = my_ticket:
pass

def releasel(lk):
lk—counter +=1

def release2(lk):
let v = lk— counter:
atomic_store(?lk— counter, v + 1)

def release3(lk):
let v = atomic_load(?lk— counter):
atomic_store(?lk— counter, v + 1)

This must be done while avoiding data races as data races lead to undefined behavior.

A data race happens when two or more threads simultaneously access a variable (i.e., one of the
counters), and at least one of those accesses writes to the variable. Data races can be avoided using
atomic operations---by definition, multiple atomic operations cannot overlap. For example, an atomic
LOAD and an atomic STORE cannot overlap and thus cannot cause adata race. However, an atomic
LOAD and a normal STORE can overlap and cause a data race. The code provides three types of atomic
operations: atomic_store, atomic_load, and fetch_and_increment. atomic_store(p, v) takes the
address of a variable p and a value v and atomically stores the value in the variable. atomic_load(p)
atomically loads the value of the variable pointed to by p and returns it. fetch_and_increment(p), ina
single atomic operation, increments the value stored at the variable pointed at by p and returmns the old

value stored there.

The threads consistently use one of the 3 acquire methods to enter a critical section and one of the 3
release methods to leave a critical section (always with the same lock), and so there are 9 possible
combinations. Inthe “data race free” column, specify using a checkmark (v) if the combinationis
free of data races, and an X (X) if the combination suffers from data races (and thus the behavior is
undefined). If you use an X, leave the other box blank (as it would be undefined). If, however, you
think the combination is free of data races, mark with a checkmark if you think the combination is
correct (implements mutual exclusion and progress). If not, enter an X. Missing and ambiguous
marks will be counted as wrong. Thus, a correct acquire/release combination should contain two
checkmarks.

Q acquire release method | datarace free correct
method
1 acquire1 release
2 acquire1 release2
3 acquire1 release3d
4 acquire2 release1
5 acquire2 release2
6 acquire2 release3d
7 acquire3 releasel
8 acquire3 release2
9 acquire3 release3d

6. To Lock or Not To Lock

Consider the following Harmony program:

Note that accu has sequential
consistency, which means that load and
store operations on ithappen
atomically. Now answer the following
questions (there is no partial credit for
partial answers):

©o -] -1 -] w Y w (%] -

R T T T T
N =~ O ©® ® N & WU A W N = O

8]
@

from synch import Lock, acquire, release

const L = True; # whether to lock or not
const U = True; # whether to unlock or not

muter = Lock()
sequential accu
accu = 3

def cs_enter(): # enter critical section
if L: acquire(?mutex)

def cs_exit(): # leave critical section
if U: release(?muter)

def TO():
cs_enter(); accu += 2; cs_exit()

def T1():
cs_enter(); accu *= 3; cs_exit()

spawn TO0()
spawn T1()

(a) After both threads TO and T1 have terminated, what are the
possible values of accu? Enter one or more integer numbers or
enter ‘none’ if you think one or both threads may never terminate

(b) Now suppose L and U are set to False. After both threads TO and
T1 have terminated, what are the possible values of accu?

of accu?

(c) Now suppose L is setto True and U is setto False. After both
threads TO and T1 have terminated, what are the possible values

11

7. Ithacais One Lane Bridges

The Ithaca campus is home to various one-lane bridges. Cars can only go in one direction
(represented by 0 or 1) on such a bridge. The following program simulates 3 cars crossing in
direction 0 and 3 cars crossing in direction 1. Each caris represented by a thread. To enter the
bridge in direction d (0 or 1), the car must call bridge_enter(d), and to exit it must call
bridge_exit(d). MAX_CARS is the maximum number of cars allowed on the bridge at any time.
ncars[d] represents the number of cars on the bridge going in direction d. The following
invariants must hold for any number of cars trying to cross the bridge:

* ncars[0] = 0 Vncars[1] = 0

* 0 <ncars[0] + ncars[1] < MAX_CARS
Also, if a car can enter the bridge, it should be allowed to. (The code cannot simply allow just
one car at a time on the bridge.)

from synch import *
const MAX_CARS = 2

muter = Lock()
condition = [Condition(), Condition() |
nears = [0, 0]

© o -1 [=] =] - w [-

def bridge_enter(direction):
acquire(?muter)
while (ncars[l — direction] > 0) or (ncars|direction] == MAX_CARS):
wait(? condition[direction], Tmutexr)
ncars|direction] += 1
release(?mutex)

-
o

-
[

-
[X]

-
w

=
[

-
2]

def bridge_exit(direction):

-
=]

17 acquire(?mutez)

18 notify All(? condition|direction))

19 ncars|direction] —= 1

20 if necars|direction] == 0:

21 notify All(? condition[1 — direction])
22 release(?mutex)

%]
(X}

def car(direction):
bridge_enter(direction)
@onbridge: pass
bridge_exit(direction)

[¥]
S

%)
(2

(<]
(=]

[*]
-1

(%]
o

for ¢ in {1..3}:
spawn car(0)
for i in {1..3}:
spawn car(1)

w w [~
- =] ©

w
%]

In the following questions, “atline X” means “just before executing the statement at line X”.
Answer the following questions with ‘yes’, ‘no’, or ‘maybe’. For example, in the first question,
answer ‘yes’ if the statementis aninvariant, ‘no’ if the negation of the statementis an
invariant, or‘maybe’ if neither is the case. Assume that MAX CARS is 2 for all questions.

yes no maybe

(a) | Atline 11, ncars|direction] < MAX_CARS

(b) | Atline 13, ncars|[direction] = 0

(c) | Atline 13, ncars[1 — direction] = 0

(d) | Atline 13, ncars|[direction] < MAX_CARS

(e) | Atline 18, ncars[1 - direction] = 0

(f) In line 18, itwould be correct to replace
notifyAll by notify

(g) | Inline 21, itwould be correct to replace
notifyAll by notify

8. Off to the races

Below find 8 Harmony programs with two threads that either read or write the shared variable
X. The programs use one or two reader/writer locks. For each of the programs, indicate in the

table whether the program may suffer a data race and/or a deadlock.

© 00 -1 (=2 o W w [N =

=
= =]

—
[~

import RW 1 import RW 1

2 2

rw = RW.RWlock() 3 rw = RW.RWlock() 3

z =0 4 z=0 4

5 5

def £(self): 6 def f(self): 6

RW.read acquire(?rw) = RW.write_acquire(?rw) 7

T = self //writex s T = self //write x 8

RW.read release(?rw) o RW.write release(?rw) o

10 10

spawn £(0 1 spawn f(0 11

spawn :EEI; Vi 12 spawn f(l; V2 12

1 import RW 1 import RW
2 2
a rw = [RW.RWlock(), RW.RWlock()] 3

4 z=0 4 x=0

5 5

6 def £(self): 6 def f(self):
7 RW.read_acquire(?rw|self]) 7
8 RW.read_acquire(?rw(l — self]) 5

9 z = self // write x 0 z = self
10 RW.read release(?rw(l — self]) 10
1 RW.read_release(?rw|[self]) 1
12 12

13 spawn £(0) 13 spawn £(0)

14 spawn f(1) V4 14 spawn f(1)

import RW

rw = RW.RWlock()
z =0

def £(self):
RW.read_acquire(?rw)

result = z //read x
RW.read release(?rw)

spawn £(0)
spawn f(1)

V3

rw = [RW.RWlock(), RW.RWlock() |

RW.write_acquire(?rw|[self])
RW.write_acquire(?rw[l — self])

// write x

RW.write release(?rw[l — self])
RW.write_release(?rw[self])

V5

14

= w [~] =

=] (] -~ [=2] o

10

11

12

13

14

import RW

rw = [RW.RWlock(), RW.RWlock()]

z=0

def £(self):
RW.write_acquire(?rw|0])
RW.write_acquire(?rw(1])
z = self // write x
RW.write release(7rw[1])
RW.write_release(?rw|[0])

spawn £(0)
spawn f(1)

V6

1 import RW

import RW

rw = [RW.RWlock(), RW.RWlock()]
z =0

def f(self):
RW.write_acquire(?rw(self])
RW.read_acquire(?rw[l — self])
z = self // write x
RW.read release(?rw([l — self])
RW.write release(7rw|self])

spawn £(0)
spawn f(1) V7

rw = [RW.RWlock(), RW.RWlock() |

2
3
4 z =0
5

6 def f(self):
RW.write_acquire(?rw[0])

8 RW.read acquire(?rw[1])
9 z = self // write x

10 RW.write_release(?rw[0])
1 RW.read_release(?rw[l])

12

135 spawn £(0)
14 spawn £(1)

Fillin the following table with “Y” (Yes) or “N” (No):

V8

V1 V2

V3

V4

V5 V6 V7 | V8

Has a data race

May deadlock

(there should be aY or Nin each of the 16 boxes above) 15

9. What aride it has been!

Given is a rollercoaster with a single car. Safety precautions require the following:

* eachriderequiresthatall seats onthe car are filled. Thatis, partially filled cars are not allowed toride

» afteraride,the car mustcompletely empty out before new riders are allowed to enter the car

Below find animplementation of a rollercoaster. RollerCoaster(N) returns the initial state of a rollercoaster
with N seats to a car. enter(b) takes a pointer b to arollercoaster variable. Athread that calls enter(b)
should block until 1) all previous riders have leftthe car and 2) the car hasfilled up again. After “doing the
ride”, the thread calls exit(b).

1 from synch import *

2

3 def RollerCoaster(nseats): result = {

4 .mutez: Lock(), .nseats: nseats, .entered: 0, .left: nseats,
5 .empty: Condition(), .full: Condition()

o}

7

8 def enter(b):

9 acquire(?b—muter)

10 while b—entered == b—nseats: # wait for car to empty out
1 wait(?b—empty, 7b— mutex)

12 b—entered +=1

13 if b—entered = b—ynseats: # wait for car to fill up

14 while b—entered < b—nseats:

15 wait(?b—full, 7b— mutez)

16 else: # car is ready to go

17 b—left =0

18 notifyAll(?b—full) # wake up others waiting in car
19 release(?b—muter)

20

21 def exit(b):

22 acquire(?b—mutex)

23 b—)left +=1

24 if b—left == b—rnseats: # car is empty

25 b—entered = 0

26 notifyAll(?b—empty) # wake up riders wanting to go

27 release(?b—muter)
To the right is a simple test program for the D st SO
rollercoaster. It create a rollercoaster * .
variable with 3 seats in the car. It then o consz ? i i 7 Seatsbm car >
creates 3x4 = 12 rider threads that each try :: const T =4 7 number of rides
to getaride. Eachrideronlytries to ride e rc = rollercoaster.RollerCoaster(N)

the rollercoaster once.

35

36 def rider():

a7 rollercoaster.enter(?rc)
38 ride: assert 1 <= countLabel(ride) <= N
39 rollercoaster.exit(?rc)

40
a1 for ¢ in {1..N*T}: spawn rider()

16

Fill in the following tables.

Place one checkmark in each row in one of the three columns always always neither
(”neither” means sometimes True and sometimes False) True False
a) | ifathreadis executing at line 38 (atthe “ride” label),
then there are at most N threads executing at line 38
b) | ifathreadis executing at line 38 (at the “ride” label),
thenrc.entered =N
c) | ifathreadis executing at line 38 (atthe “ride” label),
thenrc.left=0
d) | after all threads are done (have terminated), rc.entered
=0
e) | after all threads are done (have terminated), rc.left=N
f) | (0 <rc.left <N) = (rc.entered = N)
g) | rc.entered + rc.left > 0
h) | rc.entered + rc.left =N
i) | rc.entered + rc.left < 2N
i) all threads eventually terminate
k) | ifLine 41 is changed to spawn 10 threads exactly, then
all threads eventually terminate
Place one checkmark in each row in one of the two columns True False

1) it’s ok to replace notifyAll() in Line 18 by notify()

m) | it’s ok to replace notifyAll() in Line 26 by notify()

17

10. Playing a Waiting Game

Professor W. W. Walker at Worwell University runs a game design program. Inittheyform
teams of 3 students from across campus. Each team has 1 illustrator, 1 musician, and 1
hacker (no disrespectintended). As students sign up, Professor WWW creates teams as
soon as possible. There is a maximum number of teams in the program. As the program is
incredibly popular, Professor WWW never has to worry about not being able to form teams.
Below find a Harmony model of team forming;:

1

2

3

o

10

11

12

13

14

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

36

37

38

from synch import *

const NTEAMS = 3

mutez = Lock() the global variables consist of a lock, a

cond = Condition()
ready = { .illustrator: [], .musician:]| }

matched = {}

def member(role, id):
acquire(?mutex)
if role == .hacker:

while (ready.illustrator == []) or (ready.musician == []):

wait(?cond, ?muter)
let match = { 7
.hacker: id,
.musician: ready.musician|0)],
llustrator: ready.illustrator|0] }:
del ready.illustrator|0] # remove the first illustrator
del ready.musician[0] # remove the first musician

matched |= { match } -
else:
ready(role] += | id, |
if (ready.illustrator = []) and (ready.musician = []):
notifyAll(7cond) -
release(?mutex)

for i in {1..NTEAMS}:
spawn member (.illustrator, i)
spawn member (.musician, i)
spawn member (.hacker, i)

Check that each student is in eractly one match at the end
finally all(
(len { m for m in matched where m[role] == id }) ==
for role in { .illustrator, .musician, .hacker }
for id in {1..NTEAMS}

Mesa condition variable, a FIFO list each
for illustrators and musicians, and a set of
matched teams

a hacker waits for at
least one illustrator

} and one musician to
line up

match consists of the hacker
along with the first musician
& illustrator on the ready
lists.

(‘] is the union operator.)
illustrators and musicians
line up and, if both lines are
non-empty, notify all hackers

spawn allillustrators, musicians, and hackers

check that each
illustrator, musician,
and hacker is in exactly
one team in theend

18

Note that there is an asymmetry in the Harmony program: hackers wait for musicians and
illustrators, while musicians and illustrators notify hackers. Answer the following questions
about this Harmony program.

True

False

The program is free of data races

Allthreads are guaranteed to terminate eventually

If we replace notifyAll by notify in Line 25, some threads may
never terminate

If we replace the if statementin Line 24 by “if True”, all threads
are guaranteed to terminate eventually

Right before Line 15, itis guaranteed that there is at least one
musician and oneillustrator on the respective ready lists

Right before Line 21, itis guaranteed that both ready lists will be
empty

In Line 13, it’s ok to replace “while” by “if” assuming that there
are no “spurious wakeups” (i.e., wait() only returns if notified)

It is ok (or even better) to replace “or” by “and” in the while
conditionin Line 13.

If we didn’t care about busy waiting, it would be ok to replace
the wait() statement in Line 14 by “release(?mutex);
acquire(?mutex)”

If the program spawned fewer musicians than hackers, then
some threads would never terminate

The “del” statements that delete the first musician and
illustrator from the respective ready list are there justto reduce
memory usage and can be safely removed

19

11. RVR Really Needs a Haircut

RVR occasionally (not often enough) gets his hair cut at Big Red Barber Shop in Collegetown.
A typically barbershop has a number of barbers (and the same number of barber chairs) and
a waiting area with some seats. Customers periodically have their hair cut until, for some
reason, they no longer need to get their hair cut. However, if they get to the barbershop and
all waiting seats are taken, they skip the cut. Below find a model of a barbershop with
NBARBERS barbers, NSEATS waiting seats, and NCUSTOMERS customers using a lock and

two Mesa condition variables.

10

11

12

13

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

from synch import *

const NSEATS = 2 a3
const NCUSTOMERS = 3 34
const NBARBERS = 2 35

36
muter = Lock() a7
customer_cond = Condition() 58
barber_cond = Condition() 39

customers_wasting = {} 40

customers_ready = {} 41

42

43

def barber(self):
while True:
Wait for a customer
acquire(?muter)
while customers_waiting == {}:

44

def customer(id):
while choose { False, True }: # while alive
acquire(?muter)
if len customers_waiting < NSEATS:
Toke seat and wake up a barber
customers_waiting |= { id }
notify(?barber_cond)

Wait for some barber to cut my hair
while id not in customers_ready:
wait(? customer_cond, Tmutex)
customers_ready —= { id }
release(?muter)

for _in {1..NBARBERS}:
spawn eternal barber()

for ¢ in {1..NCUSTOMERS}:
spawn customer(z)

wait(?barber_cond, ?muter)
var ¢ = choose customers_waiting
customers_waiting —= { ¢ }
release(?muter)

cut: pass # Cut hair of customer ¢

Cut is done. Tell customer to go.
acquire(?muter)

customers_ready |= { ¢ }
notifyAll(?customer_cond)
release(?mutez)

Each customer has a unique identifier. The
model maintains two sets of customer
identifiers: customers_waiting, the set of
customers waiting for their hairto be cut, and
customers_ready, the set of customers who
just had their hair cut but haven’t left the
shop yet.

A customer checks to see if there are
available waiting seats and, if so, takes one of
the waiting seats. (‘|’is the union operator.).
The customer also notifies a barber. The
customer then waits until their hair is cut.

A barber, in an eternal loop, waits for a customer and cuts their hair. Cutting hair takes some
time. Inthe code above, a barber waits until there is at least one customer waiting, then
chooses one of the customers non-deterministically, cuts their hair, and adds the customer
to the customer_ready set. The barber finally notifies all customers.

20

Answer the following questions:

True

False

The program is free of data races

Deadlock is possible

To prevent deadlock, it is important that a barber releases the
lock (in Line 21) before cutting hair and re-acquire the lock (in
Line 25) afterwards

It is possible for customer_waiting N customer_ready to be
non-empty, i.e., some customer identifier may be in both sets

Right after acquiring the lock in Line 33, itis guaranteed thatidis
neitherin customer_waiting norin customer_ready

Right after releasing the lock in Line 43, it is guaranteed that id is
neitherin customer_waiting norin customer_ready

Right after notifying a barber in Line 37, it may be that the barber
runs next and adds id to customer_ready so the wait callin Line
41 is not executed.

Right before executing Line 19, customer_ready is guaranteed
to be empty

Right before executing Line 19, customer_ready is guaranteed
to be non-empty

Right before executing Line 26, customer_ready is guaranteed
to be empty

It is ok to replace notifyAll by notify in Line 28.

21

The code to the right is how one from club import ClubHouse, enter, exit

might test the ClubHouse code
in Question q.3. You do not need
to look at this code unless you
think it might help you.

const CAPACITY = 2 # max number of people in club house
const CLUBS = [3, 3, 1 | # number of members in each club
theclub = ClubHouse(CAPACITY)

counters = [0,] * len(CLUBS)

def member(myclub):
while choose { True, False }:
enter(?theclub, myclub)

The code models a clubhouse
that can accommodate at most 2

v W N e oA W N e

people ata time, and three clubs | atomically:
of 3,3, and 1 members 12 counters|myclub] += 1
respectively. 15 assert 1 <= counters|myclub] <= CAPACITY
14 assert all(counters[c] == 0
. _ |:
The code checks that the 15 . for c in { 0 .. len(CLUBS) — 1} where ¢ != myclub)
. . 16 # linger a while
capacity of the clubhouse isnot atomically counters[myclub] —= 1
exceeded and that there cannot 5 exit(?theclub)

be members of multiple clubsin 1

the clubhouse simultaneously. = for ¢cin {0 .. len(CLUBS) - 1 }
21 for _in { 1 .. CLUBS[(] }:

22 spawn member(c)

22

12. Join the Club

Cornell University has a clubhouse that is shared by several clubs. Fire codes require that the clubhouse
cannot be occupied by more than a certain maximum number of students. To enter the clubhouse, a student
must be a member of a club. There are no students that are members of more than one club. Moreover, the
clubs agreed that the clubhouse cannot be used by more than one club ata time. This means thatthere can
never be two students of different clubsin the clubhouse. Every studentin the clubhouse eventually exits.

On this and the following page you
find fourimplementations (A, B, C,
and D) of a “ClubHouse” abstraction
that try to model such a clubhouse.
Students are modeled asthreads.
The interface has three methods:

ClubHouse(n): returns the initial state
of a clubhouse with a maximum
occupancy of n (n > 1) students.

enter(ch, club): ch pointsto a
clubhouse variable, and club is a
unique identifier for some club. This
method models a member of the given
club trying to enter the clubhouse. The
method waits until the conditions
above are met but must not stop a
student if they can enter.

exit(ch): this models a student leaving
the clubhouse.

1

10

11

12

13

14

15

16

17

18

19

20

21

22

from synch import * A

def ClubHouse(n) returns init:
init = {
.mutez: Lock(),
.capacity: n, .occupancy: 0, .club: None

}

def enter(ch, club):
acquire(?ch—muter)
while (ch— occupancy == ch— capacity) or
((ch—occupancy > 0) and (ch— club = club)):

release(?ch— mutez)
acquire(?ch—mutex)

ch—club = club

ch—occupancy +=1

release(?ch—muter)

def exit(ch):
acquire(?ch—mutex)
ch—occupancy —= 1
release(?ch—muter)

Each of the implementations keeps track of the state of the clubhouse. The implementations have the

following state in common:

mutex: a lock that protects the state under concurrent access

capacity. the maximum number of students allowed in the clubhouse
occupancy: the current number of students in the clubhouse

club: the club the students belong to (if there are any students in the clubhouse)

a) Put v or X in each of the following boxes (one box per property and implementation):

Property

A B Cc D

Does not allow students of different clubs to enter at the same time

Does not allow more students to enter than the capacity allows

clubhouse

Does not prevent students from enteringif they are allowed into the

Does not use busy waiting

(Waitingon a lock oron a condition variable is not considered busy waiting.)

23

1 from synch import * B

3 def ClubHouse(n) returns init: b) Answer the following questions
4 ingt = { using v or X only forimplementation
5 .mutez: Lock(), B.
6 .conflict: Condition(), .full: Condition(),
7 .capacity: n, .occupafp,)cy: 0, .club: None() Property B
8 } It's ok to remove the if
9 statementin line 25 and
10 def enter(ch, club): always notifyAll ch->conflict
" acq.ulre(?ch—>mutez) . It's ok to replace notifyAllin
12 while (ch— occupancy == ch— capacity) or . . .
line 26 with notify
13 ((ch—occupancy > 0) and (ch—club != club)):
14 if ch— occupancy == ch— capacity:
15 wait(?ch— full, ?ch—muter) It’s better to replace
16 if (ch—occupancy > 0) and (ch— club != club): notifyAll in line 27 with
17 wait(?ch— conflict, 7ch— muter) notify
18 ch—club = club
19 ch—occupancy += 1
20 release(?ch—muter)

21

22 def exit(ch):

23 a;quire(?ch—)mutea:) 1 from synch import * C
24 ch—occupancy —= 1 2
25 if ch—occupancy == 0: 3 def ClubHouse(n) returns init:
26 notifyAll(?ch—conflict) 4 init =
27 notifyAll(?ch— full) 5 ,mut{egj: Lock(),
28 release(?ch—ymutez) 6 .conflict: Condition(), .full: Condition(),
7 .capacity: n, .occupancy: 0, .club: None
8
1 from synch import * D 0 }
2 10 def enter(ch, club):
3 def ClubHouse(n) returns init] | ., acquire(?ch—muter)
a init = Lock() 12 while ch—soccupancy == ch— capacity:
5 13 wait(?ch—full, 7ch—muter)
6 def enter(ch, club): 14 while (ch—occupancy > 0) and (ch—club != club):
7 acquire(ch) 15 wait(?ch— conflict, ?ch—mutex)
8 16 ch—club = club
9 def exit(ch): 17 ch—occupancy += 1
10 release(ch) 18 release(?ch—mutex)
19
20 def exit(ch):
. . 21 acquire(?ch—muter)
Did you fill out 22 ch—occupancy —= 1
; 23 if ch—occupancy ==
the table in 24 notifyAll(?ch—conflict)
the top right? 25 notifyAl1(?ch— full)
26 release(?ch—mutex)

24

13. Running out of Steam

Below, on the left, find a Harmony program that models a “bounded resource.” A bounded resource has
a certain number of instances, called its “capacity.” A resourceis modeled by a “resource variable”
initialized using Resource(capacity). Given a pointer r to a resource variable, the method alloc(r, n)
allocates n instances of the resource. The method waits untiln instances are available. The method
free(r, n) releases n previously allocated instances of the resource.

1 from synch import *
2 29 rz = Resource(N X)
3 def Resource(capacity) returns init: 30 ry = Resource(N_Y)
4 init = { .mutez: Lock(), .cond: Condition(), 31
5 .cap: capacity, .avail: capacity } 29 def app1():
o 33 alloc(?rz, N.X_1)
v def all‘oc(r‘; n): 34 alloc(?ry, N.Y 1)
8 acquire(?r—mutex)

, 35 free(?rzr, N.X_1)
9 assert 0 <= r—avail <= r—cap o
10 while n > r—avail: 36 free(?ry, N.Y 1)
1 wait(?r—cond, 7r—mutez) 37
12 r—avail == n 38 def app2():
13 release(?r—mutez) 39 alloc(?ry, N.Y 2)
14 10 alloc(?rz, NX_2)
15 def free(r, n): a free(?ry, N.Y_2)
16 acquire(?'r_—)mutem)_ - . - 12 free(?m‘: N_X_2)
17 assert 0 <= r—avail <= (r—avail + n) <= r—cap -
18 r—avail +=n
10 notifyAll(?r—cond) 4 spawn appl()
20 release(?r—mutex) 45 spawn app2()

The code on the right models two resources x and y by resource variables rx and ry, as well as two
threads app1() and app2() that allocate resources. There are N_X instances of resource x and N_Y
instances of resource y. app1() first allocates N_X_1 instances of resource x and then N_Y_1 instances
of resource y. app2(), instead, allocates N_Y_2 instances of resource y first and then N_X_2 instances of
resource x. Both threads immediately release the resources they acquired.

Unfortunately, for certain values of these 6 constants, deadlock can occur.

g.1) Fillin the following table using v or X in each box:

N_X N_Y N_X_1 N_Y_1 N_X 2 N_Y 2 deadlock
possible?
1 1 1 1 1 1
2 2 1 1 1 1
2 2 2 2 2 2
2 2 1 2 1 2
2 2 1 2 2 1

25

14. The Dining Philosophers Return

The Dining Philosophers are dining again. Below find an (incomplete) program for the Dining
Philosophers. The state of each fork is represented by a boolean. False means the fork is
available; True means the fork is taken. The code uses a Mesa monitor approach.

1 from synch import *

2

3 const N =5

4

5 mutex = Lock() The state consists of a monitor

6 forks = [False,] * N lock, the status of each fork, and
. conds = [Condition(),] * N a condition variable for each fork.

9 def pickup_fork(f): A fork should only be picked up

10 assert not forks|f] when itis not already taken.

1 forks[f] = True

12

13 def replace,fork(f): A fork can only pe replacedifit’s
taken. Afterdoing so, wake up a

14 assert forks|f] o .
thread waiting for the fork, if any.

15 forks[f] = False

16 notify(?conds|f]) # wake up someone waiting for this fork

17

18 def get _forks(left, right):
19 pass # replace with code to pick up forks to be replaced
20

21 def diner(which):

22 let left, right = (which, (which + 1) % N):
23 while choose({ False, True }):
24 acquire(?mutez)
25 get_forks(left, right) Each diner is a thread
26 release(?mutex) that first determines the
identifiers of its left and
27
. rightforks. Thenitruns
28 # dine .
a loop untilit chooses
29 #

False. Inthe loop body,

30 acquire(?mutez) the thread first picks up
31 replace_f ork(left) the forks, then dines,

32 replace_fork(right) then replaces the forks.
33 release(?muter)

34
35 for i in {0..N-1}:
36 spawn diner(7)

The method get_forks(left, right) must be completed. Below find five different ways of
implementing get_forks(). Some are correct; some are not. You are to determine if one of the
assertions on the previous page might fail and if the implementation might deadlock if the
assertions are ignored.

V1

~l [=2] o [W (&) [

def get _forks(left, right):
while forks|left]:
wait(?conds|left], Tmutex)
pickup_fork(left)
while forks|right]:
wait(?conds|[right], Tmutex)
pickup_fork(right)

V3

1
2
3
4
5
6
7
8

def get_forks(left, right):

V2

(V)

w

(o] ~ [« o [

let f1, f2 = min(left, right), max(left, right):

while forks[f1]:
wait(7conds|fI], Tmuter)

pickup_fork(f1)

while forks[f2]:
wait(?conds|f2|, Tmutez)

pickup_fork(f2)

<
ol

o L | [} o [w N [

Fillin the following table with “Y” (Yes) or “N” (No):

def get_forks(left, right):

let f1, f2 = min(left, right), max(left, right):

while forks[f1]:
wait(?conds[f1], Tmutex)
while forks[f2]:
wait(?conds[f2], ?mutez)
pickup_fork(fI)
pickup_fork(f2)

def get_forks(left, right):
while forks[left] or forks[right]:
if forks|left]:
wait(?conds[left], Tmutex)
if forks[right]:
wait(?conds[right], ?muter)
pickup_fork(left)
pickup_fork(right)

V4

def get_forks(left, right):
while forks[left|:
wait(?conds|left], ?mutex)
while forks|right]:
wait(?conds|right], Tmutez)
pickup _fork(left)
pickup_fork(right)

~ (=) (4] [w (M) =

V1 V2 V3 | V4 | V5

Assertion may fail

May deadlock

(there should be aY or N in each of the 10 boxes above)

27

15. Hit the gas!

The following Harmony program uses a Mesa monitor approach to simulate carbon and hydrogen
atoms (each modeled using threads) combining to form methane (CH,) molecules. Each methane
molecule consists of 4 hydrogen atoms and 1 carbon atom.

1

2

3

{5}

10

11

12

13

14

16

17

18

20

21

22

23

24

26

27

28

30

31

32

33

34

36

a7

38

from synch import *

const nCarbon = 1000
const nHydrogen = 4 * nCarbon

The state consists of the
number of hydrogen and
carbon threads waiting to be
combined, and the remaining
number of such threads that
have been matched to form

waitingHydrogen = waitingCarbon = 0
matched Hydrogen = matchedCarbon = 0
mutex = Lock()

condHydrogen = condCarbon = Condition()

def hydrogen():
acquire(?mutex)
if (waitingHydrogen >= 3) and (waitingCarbon >= 1):
waitingHydrogen —= 3; matchedHydrogen += 3
waitingCarbon ——= 1; matchedCarbon += 1

methane.

i ?
no?iyﬁr}l(.;(&ndfydmgen) When there’s a match, notify all
1 notify(?condCarbon) who might be able to continue.
else:

wastingHydrogen += 1
while matched Hydrogen == 0:
wait(?condHydrogen, ?mutex)
matched Hydrogen — 1
release(?muter)

Wait until a hydrogen atom has
been made part of amethane
molecule.

def carbon():
acquire(?mutex)

if waitingHydrogen >= 4: When there’s a match,
waztingHydrogen —= 4; matchedHydrogen += 4 | notify hydrogen threads
notifyAll(?condHydrogen) only.

else:

waitingCarbon += 1

while matchedCarbon == Wait until a carbon atom has been

made part of a methane molecule.

wait(?condCarbon, T"mutex)
matchedCarbon —= 1
release(?mutex)

for _in {1..nHydrogen}: spawn hydrogen()
for _in {1..nCarbon}: spawn carbon()

28

Fill in the following tables.

Place one checkmark in each row in one of the three columns always always neither
(”neither” means sometimes True and sometimes False) True False
a) | allthreads eventually terminate
b) | if allthreads have terminated, then waitingHydrogen
and waitingCarbon are both 0
c) | ifallthreads have terminated, then matchedHydrogen
and matchedCarbon are both largerthan 0
d) | Ifnolockis held, then (waitingHydrogen < 4 or
waitingCarbon = 0)
e) | Ifnolockis held, then (matchedHydrogen < 4 or
matchedCarbon = 0)
f) | when a thread resumes right after the wait() call in line
21, matchedHydrogen is larger than 0
g) | if,inline 4, constant nHydrogen is set to a value larger
than 4 times nCarbon, then some hydrogen threads will
never terminate
h) | ifnolock is held, then 4 X matchedHydrogen =
matchedCarbon
Place one checkmark in each row in one of the two columns True False

i) it’s ok to replace notifyAll() in Line 16 by notify()

i) it’s ok to replace notifyAll() in Line 16 by 3 calls to
notify() on the same condition variable

k) | it’s okto replace notifyAll() in Line 29 by notify()

1) it’'s ok to replace notifyAll() in Line 29 by 3 calls to
notify() on the same condition variable

29

16. Chez Platopus

The famous philosopher Platopus lives in the underwater world of the multipi. A multipusis an
elegant creature with one or more arms. E.g., an octopus has eight arms, while a pentopus has
only 5. Multipi love to eat escargot (snails), but they require afork foreach arm before they can
eat. Platopus decides to open an escargot place. There’s a single large communal table with a
glass of forks in the center. When a multipus arrives at the restaurant, they go to the table,
eagerly take forks from the glass untilthey have a fork foreach arm (waiting if the glass is empty),
eat all escargot they can eat (and there’s an infinite supply of those), and then replace the forks.
The Harmony program below models the restaurant.

1

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

from synch import *

const NFORKS = 18
const MULTIPI = [§, 5, 8 |

mutex = Lock()
cond = Condition()
avail = NFORKS

def take fork():
acquire(?muter)
while avail ==
wait(?cond, Tmutez)
avail —= 1
release(?mutex)

def replace fork():
acquire(?muter)
avail +=1
notifyAll(?cond)
release(?mutex)

def multipus(n):
for 7 in {1..n}:
take _fork()

eat

for i in {1..n}:
replace fork()

for n in MULTIPI:
spawn multipus(n)

The parameters. NFORKS is the number of
forks initially in the glass. In this scenario there
are three multipi: two octopi and one
pentopus, and 18 forks in the glass initially.

Here are the variables. The integeravail keeps
track of how many forks there are leftin the
glass.

This code waits until there’s at least one fork in
the glass and then takes it.

This code replaces a fork in the glass and
notifies the multipi that are waiting for a fork.

A multipus with n arms eagerly takes n forks,
one ata time, and then eats. Aftereating, they
replace the forks and leave.

Here the various multipi get spawned.
30

Initially, Platopus didn’t think things through very carefully. They noticed that sometimes
there are a bunch of platipi at the table, each holding some but not enough forks, while the
glass is empty. Platopus called this idea “deadlock” and spent the rest of their highly
influential life trying to figure out under what circumstances deadlock may occur.

a) Fillin thetable below, putting a checkmark in each rowin one of the columns:

Always: deadlock is unavoidable. It always occurs.
Never: deadlock cannot happen.

Sometimes: deadlock may or may not occur depending on circumstances

NFORKS MULTIPI Always Never Sometimes
18 [8,5,8]
15 [8,8]
21 [8,8,8]
5 [2,2,2,2]
2 [3,1]

Now answer the following questions about the code:

True False

b) | Just afterexecuting Line 11, itis invariant that avail=0

c) Just before executing Line 14, it is invariant that avail > 0

d) Just before executing Line 19, it is invariant that avail < NFORKS

e) Line 20 can be replaced with notify(?cond) with no ill effect (i.e.,
if deadlocks were not possible, they are stillnot possible)

f) Line 26 is a “critical section”. Thatis, itis impossible for
multiple multipi to eat atthe same time

31

17. The Water is Wide

The Harmony code below models a ferry between locations 0 and 1 (representing the east side and the
west side of a river respectively). The ferry can carry a maximum of CAPACITY passengers.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

from synch import *
const CAPACITY = 10

muter = Lock()
location = 0 # 0 = east, 1 = west

avail = [Condition(), Condition() |
full = [Condition(), Condition() |

entered = 0
left = CAPACITY

def embark(side):
acquire(?muter)

wait for ferry to arrive and empty out
while (location = side) or (left < CAPACITY):

wait(?avail[side], Tmuter)
entered +=1
if entered < CAPACITY:
wait for ferry to fill up
while entered != CAPACITY:
wait(?full[side], Tmuter)
else:
ferry is full and can cross
left =0
notifyAll(?full[side])
release(?muter)

def disembark(side):
acquire(?mutex)
left +=1
if left == CAPACITY:

everybody has arrived and left the ferry

entered = 0

location = 1 — location

notifyAl1(?avail[location])
release(?muter)

49

50

51

52

53

54

55

56

57

58

59

60

const EAST = 40
const WEST = 30

def passenger(side):
embark(side)
Enjoy the view
disembark(side)

for 7 in {1 .. EAST}:
spawn passenger(0)

for 7 in {1 .. WEST}:
spawn passenger(1)

32

The ferry starts out on the east side (0) and can only run when it’s filled up with passengers.
There are a total of EAST passengers on the east side and WEST passengers on the west side.
The passengers are spawned in Lines 49-60 in the box on the right-hand side of the page. Each
passenger embarks on either the east or west side and disembarks on the other. For the code
to work, both EAST and WEST must be a multiple of CAPACITY, and either EAST = WEST or EAST
= WEST + CAPACITY.

The ferry code uses the following variables:

* mutex: a global lock

* location: the currentlocation of the ferry (0 is east side, 1is west side)

* avail: a condition variable for each side, to wait until ferry is ready for boarding

* full: a condition variable for each side, to wait until the ferry filled up and can sail
* entered: the number of passengers that have boarded the ferry

* left: the number of passengers that have disembarked

Answer the following questions about the code: True | False

a) | Thenumber of threads executing in Line 54 is always either 0 or
CAPACITY

b) If some thread is executing at Line 54, then entered = CAPACITY

c) | If some thread is executing at Line 54, then left < CAPACITY

d) If all threads terminate, theninthe end left =0

e) | Thefollowing predicate is invariant after initialization:
entered + left > CAPACITY

f) The notifyAllcallin Line 25 is inefficient and can be replaced
with just notify

g) | The notifyAllcallin Line 35 is inefficient and can be replaced
with just notify

h) [Usingthe constants as given, this program will eventually
terminate (all threads will eventually terminate)

33

18. Cross Lock

A “cross lock” is a bit like a reader/writer lock, but it is more symmetric. As in reader/writer
locks, there are two kinds of thread. The kinds are 0 and 1. Multiple threads can acquire the
lock, but there can never be more than one of each kind that has simultaneously acquired the
lock. So, it’s ok for one thread of kind 0 and three threads of kind 1 to have the lock
simultaneously, but it’s not ok for two threads of kind 0 and two threads of kind 1 to have the
lock simultaneously. Below find a specification and an implementation.

def CrossLock() returns init: g . Method CrossLock()
int = { .count: [0,] * 2 } Spegcification returns the initial

def ok(c, kind) returns success: value of across lock.

L - - B~ R - B

success = (c—count[kind] == 0) or (c—count[l — kind] in { 0,1 })
Method cl_acquire()
def cl_acquire(c, kind): takes a pointerto a
atomically when ok(c, kind): cross lock variable
c—countlkind] += 1 and a kind as

[

arguments. It blocks

def cl.release(c, kind): ifitis not currently

[
=

12 atomically c—countlkind] —=1) 3
possible to acquire

. from synch import *) the lock for that kind
2 Implementation| ofthread.
3 def CrossLock() returns init:
4 init = { Method cl_release()
s -mutex: Lock(), takes the same two
6 .count: [0,] * 2, . arguments. It
7 .cond: [Condition(),] * 2 releases the lock
Z } once for that kind of
10 def ok(c, kind) returns success: threaq’ possibly
1 success = (c—count[kind] == 0) or (c—count[l — kind] in { 0,1 })| allowingother
12 threads to acquire
13 def cl_acquire(ec, kind): the lock.
14 acquire(?c—muter)
15 while not ok(¢, kind): The implementation
16 wait(?c—cond|kind], ?7c—mutez) uses Mesa condition
17 c—count[kind] +=1 .

o variables, one for
18 release(?c—muter) .
Lo each kind.
20 def cl release(ec, kind):
21 acquire(?c—mutex) Note that the
22 c—count|kind] —= 1 expression “1 - kind”
23 if c%count[kind] == 0 Computes “the other
24 notify(?c— cond[kind)) kind”: 0 becomes 1
25 if c— countlkind] == 1:

and 1 becomes O.

26 notifyAll(?c—cond[l — kind))
a7 release(?c—muter)

34

To the right find a test program. It starts four threads of
each kind. Each thread tries to acquire and release the
lock zero or more times. There are 4threads of kind 0
and 4 threads of kind 1 configured in this test program.
The variable in_cs keeps track of how many threads of
each kind are in the “critical section” (Lines 15-17). If a
thread of kind O is in the critical section, thenin_cs[0]
must be at least 1. However, this critical section allows
multiple threads of different kinds to be in the critical
section constrained by the rules described on the
previous page.

One of your tasks is to find suitable invariants for this
test program for Line 9. Indicate in the table below with
v ifthe predicate is invariant and with X if not.

a) (in_cs[0]>0) or (in_cs[1] > 0)

b) (in_cs[0] >=0) and (in_cs[1] >=0)

C) (in_cs[0]in{0,1}and (in_cs[1]in{0,1})

d) (in_cs[0]in{0,1})or (in_cs[1]1in{0,1})

15

16

17

18

19

20

from crosslock import *
const N =[4, 4]
thelock = CrossLock()

in_cs = [0,] * 2

def thread(kind):
while choose { False, True }:
cl_acquire(?thelock, kind)
atomically in_cs[kind] += 1

assert in_cs[kind] > 0

atomically in_cs[kind] —= 1
cl_release(?thelock, kind)

for _in {1.. N[0] }:
spawn thread(0)
for _in{ 1. N[1] }:
spawn thread(1)

e) (in_cs[0] <in_cs[1]) or (in_cs[0] >
in_cs[1])

Answer the following questions about the cross lock implementation with v or X:

be either0 or 1.

f) Just before Line 17 (after the while loop finishes), c->count[1 - kind] must

must be larger than 0.

g) Between Line 21 and 22 (just after acquiring the mutex), c->count[kind]

to remove Line 23.

h) It is correct to replace Lines 23 and 24 with notify(?c->cond[kind]), thatis,

notify().

i) Thereis no disadvantage to replacing notifyAll() in Line 26 with just

35

19. Dining Western Philosophers

A group of N western philosophers get together to eat at a hip local restaurant. Western philosophers
eatusing a knife and a fork. In the center of their table is a mug with the same number of knives and
forks. Left-handed philosophers first take a fork and then a knife before they can eat; right-handed
philosophers first take a knife and then a fork. If the utensil they are looking for is not available, they
wait. Once a philosopher has a knife and a fork, they eat and replace the utensils. Each philosopher
eats zero or more times before they leave the restaurant.

Lo - T Y S * B R

[O S N T S R N R N R T T o T T T S S = S S Y
N P O © ® N4 O @ A& W N B O © ® N & U s W KN ~ O

w
@

const N LEFT = 2 # number of left—handed (fork—first) philosophers
const N.RIGHT = 2 # number of right—handed (knife— first) philosophers
const N_PAIRS = 3 # number of pairs of forks and knives

nforks = nknives = N_PAIRS

def take(utensil):
atomically when utensil > 0:
lutensil —= 1

def replace(utensil):
atomically lutensil += 1

def left_handed():
while choose { False, True }:
take(?nforks)
take(?nknives)
eat
replace(?nforks)
replace(?nknives)

def right_handed():
while choose { False, True }:
take(?nknives)
take(?nforks)
eat
replace(?nknives)
replace(?nforks)

for _in { 1 .. N.LEFT }:
spawn left_handed|()

for _in {1 .. NRIGHT }:
spawn right handed()

For particular combinations of N_LEFT,
N_RIGHT, and N_PAIRS deadlock may or
may not be possible. Inthetable to the
right, use v to indicate thatdeadlock s
possible, and X to indicate that deadlock
is not possible.

The code on the left models left-handed and right-handed
western philosophers in Harmony. The variable nforks keeps
track of how many forks are left in the mug, while nknives
keeps track of the number of knives in the mug.

The method take(utensil) waits for a utensil of a particular
type to be available and then takes one. The method

replace(utensil) replaces a utensil of a particular type.

Each of the philosophers eats zero of more times.

N_LEFT N_RIGHT | N_PAIRS | deadlock

possible?
3 3 6
3 3 4
3 3 3
3 3 1
3 0 3
3 0 1
2 3 4
2 3 3
2 3 2
2 3 1

36

	Slide 1: Examples of Concurrent Programming Exam Questions Using Harmony
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

