

Permission is granted to copy, distribute and/or modify this document under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
at http://creativecommons.org/licenses/by-nc-sa/4.0.

1

http://creativecommons.org/licenses/by-nc-sa/4.0

Contents

1 On Concurrent Programming 9

2 Hello World! 13

3 The Problems with Concurrent Programming 19

4 The Harmony Virtual Machine 26

5 Critical Sections 33

6 Harmony Methods and Pointers 43

7 Specifying a Lock 48

8 Lock Implementations 51

9 Concurrent Data Structures 61

10 Testing: Checking Behaviors 70

11 Debugging 78

12 Conditional Waiting 84
12.1 Reader/Writer Locks . 84
12.2 Bounded Buffer . 87

13 Condition Variables 91

14 Starvation 97

15 Deadlock 101

16 Actors and Message Passing 107

17 Barrier Synchronization 110

18 Advanced Barrier Synchronization 117

2

19 Example: A Concurrent File Service 120

20 Interrupts 132

21 Non-Blocking Synchronization 139

22 Alternating Bit Protocol 142

23 Leader Election 146

24 Transactions and Two Phase Commit 149

25 Chain Replication 154

26 Working with Actions 160

27 Replicated Atomic Read/Write Register 164

28 Distributed Consensus 169

29 Paxos 176

30 Needham-Schroeder Authentication Protocol 180

Bibliography 183

A Harmony Language Reference 186
A.1 Value Types and Operators . 186
A.2 Statements . 194
A.3 Harmony is not object-oriented . 200
A.4 Constants, Global and Local Variables . 201
A.5 Operator Precedence . 202
A.6 Tuples, Lists, and Pattern Matching . 202
A.7 Dynamic Allocation . 203
A.8 Comments . 205
A.9 Type Checking . 205

B Modules 207
B.1 The action module . 207
B.2 The alloc module . 208
B.3 The bags module . 208
B.4 The hoare module . 208
B.5 The lists module . 208
B.6 The sets module . 209
B.7 The synch module . 209
B.8 The thread module . 210

3

C The Harmony Virtual Machine 211
C.1 Machine Instructions . 212
C.2 Addresses and Method Calls . 214
C.3 Contexts and Threads . 214
C.4 Formal Specification . 215

D How Harmony Works 216
D.1 Compiler . 216
D.2 Model Checker . 217
D.3 Automata Conversion . 218
D.4 Model Checker Output Analysis . 218

E Simplified Grammar 220

F Directly checking linearizability 223

G Manual Pages 227

H Peterson’s Algorithm 230

I Split Binary Semaphores 235

Acknowledgments 242

Index 243

Glossary 245

4

List of Figures

2.1 [code/hello1.hny] Hello World! . 13
2.2 [code/hello3.hny] Harmony program with two possible outputs 14
2.3 [code/hello4.hny] Harmony program with an infinite number of possible outputs . . 14
2.4 Demonstrating Harmony methods and threads . 15
2.5 [code/hello7.hny] Various interleavings of threads . 16
2.6 [code/hello8.hny] Making groups of operations atomic reduces interleaving 16
2.7 [code/triangle.hny] Computing triangle numbers . 17
2.8 Running the code in Figure 2.7 . 17
2.9 Running the code in Figure 2.7 for N = 100 . 18

3.1 The problem with non-determinism . 20
3.2 The problem with non-atomicity . 21
3.3 [code/prog5.hny] What actually happens in Figure 3.2(b) 22
3.4 [python/inc.py] Python implementation of Figure 3.2(b) 24
3.5 [python/incmany.py] Using Python to increment N times 25

4.1 The first part of the HVM bytecode corresponding to Figure 3.2(b) 28
4.2 The HTML output of running Harmony on Figure 3.2(b) 30
4.3 [code/prog4enter.hny] Incorrect attempt at fixing the code of Figure 3.2(b) 32

5.1 [code/csbarebones.hny] Modeling a critical section 33
5.2 [code/cs.hny] Harmony model of a critical section . 34
5.3 [code/naiveLock.hny] Näıve implementation of a shared lock and the markdown out-

put of running Harmony . 36
5.4 [code/naiveFlags.hny] Näıve use of flags to solve mutual exclusion 37
5.5 [code/naiveTurn.hny] Näıve use of turn variable to solve mutual exclusion 38
5.6 [code/Peterson.hny] Peterson’s Algorithm . 39
5.7 [code/csonebit.hny] Mutual exclusion using a flag per thread 42

6.1 [code/PetersonMethod.hny] Peterson’s Algorithm accessed through methods 44
6.2 [code/hanoi.hny] Nondeterministic Towers of Hanoi 45
6.3 [code/hanoi2.hny] Recursive Towers of Hanoi . 45
6.4 [code/clock.hny] Harmony program that finds page replacement anomalies 46

7.1 [code/lock.hny] Specification of a lock . 49
7.2 [code/lock demo.hny] Using a lock to implement a critical section 49

5

https://harmony.cs.cornell.edu/code/hello1.hny
https://harmony.cs.cornell.edu/code/hello3.hny
https://harmony.cs.cornell.edu/code/hello4.hny
https://harmony.cs.cornell.edu/code/hello7.hny
https://harmony.cs.cornell.edu/code/hello8.hny
https://harmony.cs.cornell.edu/code/triangle.hny
https://harmony.cs.cornell.edu/code/prog5.hny
https://harmony.cs.cornell.edu/python/inc.py
https://harmony.cs.cornell.edu/python/incmany.py
https://harmony.cs.cornell.edu/output/prog4.htm
https://harmony.cs.cornell.edu/code/prog4enter.hny
https://harmony.cs.cornell.edu/code/csbarebones.hny
https://harmony.cs.cornell.edu/code/cs.hny
https://harmony.cs.cornell.edu/code/naiveLock.hny
https://harmony.cs.cornell.edu/code/naiveFlags.hny
https://harmony.cs.cornell.edu/code/naiveTurn.hny
https://harmony.cs.cornell.edu/code/Peterson.hny
https://harmony.cs.cornell.edu/code/csonebit.hny
https://harmony.cs.cornell.edu/code/PetersonMethod.hny
https://harmony.cs.cornell.edu/code/hanoi.hny
https://harmony.cs.cornell.edu/code/hanoi2.hny
https://harmony.cs.cornell.edu/code/clock.hny
https://harmony.cs.cornell.edu/code/lock.hny
https://harmony.cs.cornell.edu/code/lock_demo.hny

7.3 [code/prog4lock.hny] Figure 3.2(b) fixed with a lock 50

8.1 [code/spinlock.hny] Mutual Exclusion using a “spinlock” based on atomic swap . . . 52
8.2 [code/lock tas.hny] Implementation of the lock specification in Figure 7.1 using a

spinlock based on test-and-set . 54
8.3 [code/lock ticket.hny] Implementation of the lock specification in Figure 7.1 using a

ticket lock . 55
8.4 [code/lock test1.hny] A test program for locks (based on Figure 5.2) 56
8.5 [modules/lock susp.hny] Lock implementation using suspension 57
8.6 [code/xy.hny] Incomplete code for Exercise 8.2 with desired invariant x+ y = 100 . . 59
8.7 [code/atm.hny] Withdrawing money from an ATM 60

9.1 A sequential and a concurrent specification of a queue 62
9.2 [code/queue test1.hny] Using a concurrent queue . 62
9.3 [code/queue lock.hny] An implementation of a concurrent queue data structure and

a depiction of a queue with three elements . 64
9.4 [code/queue MS.hny] A queue with separate locks for enqueuing and dequeuing items

and a depiction of a queue with two elements . 65
9.5 [code/setobj.hny] Specification of a concurrent set object 66
9.6 [code/setobj test1.hny] Test code for set objects . 67
9.7 [code/setobj linkedlist.hny] Implementation of a set of values using a linked list with

fine-grained locking . 68

10.1 [code/queue test seq.hny] Sequential queue test . 71
10.2 [code/queue btest2.hny] Concurrent queue test. The behavior DFA is for

N PUT = N GET = 1. 73
10.3 [python/queue btest2.py] Python implementation of Figure 10.2 74
10.4 [code/queue broken1.hny] A correct sequential but not a correct concurrent queue

implementation . 75

11.1 [code/queue broken2.hny] A buggy queue implementation 79
11.2 Running Figure 10.2 against Figure 11.1 . 80
11.3 HTML output of Figure 11.2 but for N PUT=2 and N GET=1 81
11.4 [code/queue fix.hny] Queue implementation with hand-over-hand locking 83

12.1 [code/rwlock.hny] Specification of reader/writer locks 85
12.2 [code/rwlock test1.hny] Test code for reader/writer locks 86
12.3 [code/rwlock cheat.hny] ”Cheating” reader/writer lock 87
12.4 [code/rwlock btest.hny] A behavioral test of reader/writer locks 88
12.5 [code/rwlock busy.hny] Busy waiting reader/writer lock 89
12.6 [code/boundedbuffer.hny] Bounded buffer specification 90

13.1 [code/rwlock cv.hny] Reader/Writer Lock using Mesa-style condition variables . . . 92
13.2 [modules/synch.hny] Implementation of condition variables in the synch module . . 94
13.3 [code/gpu.hny] A thread-unsafe GPU allocator . 95
13.4 [code/qsort.hny] Iterative qsort() implementation . 96
13.5 [code/qsorttest.hny] Test program for Figure 13.4 . 96

6

https://harmony.cs.cornell.edu/code/prog4lock.hny
https://harmony.cs.cornell.edu/code/spinlock.hny
https://harmony.cs.cornell.edu/code/lock_tas.hny
https://harmony.cs.cornell.edu/code/lock_ticket.hny
https://harmony.cs.cornell.edu/code/lock_test1.hny
https://harmony.cs.cornell.edu/modules/lock_susp.hny
https://harmony.cs.cornell.edu/code/xy.hny
https://harmony.cs.cornell.edu/code/atm.hny
https://harmony.cs.cornell.edu/code/queue_test1.hny
https://harmony.cs.cornell.edu/code/queue_lock.hny
https://harmony.cs.cornell.edu/code/queue_MS.hny
https://harmony.cs.cornell.edu/code/setobj.hny
https://harmony.cs.cornell.edu/code/setobj_test1.hny
https://harmony.cs.cornell.edu/code/setobj_linkedlist.hny
https://harmony.cs.cornell.edu/code/queue_test_seq.hny
https://harmony.cs.cornell.edu/code/queue_btest2.hny
https://harmony.cs.cornell.edu/python/queue_btest2.py
https://harmony.cs.cornell.edu/code/queue_broken1.hny
https://harmony.cs.cornell.edu/code/queue_broken2.hny
https://harmony.cs.cornell.edu/output/queue_btest2.htm
https://harmony.cs.cornell.edu/code/queue_fix.hny
https://harmony.cs.cornell.edu/code/rwlock.hny
https://harmony.cs.cornell.edu/code/rwlock_test1.hny
https://harmony.cs.cornell.edu/code/rwlock_cheat.hny
https://harmony.cs.cornell.edu/code/rwlock_btest.hny
https://harmony.cs.cornell.edu/code/rwlock_busy.hny
https://harmony.cs.cornell.edu/code/boundedbuffer.hny
https://harmony.cs.cornell.edu/code/rwlock_cv.hny
https://harmony.cs.cornell.edu/modules/synch.hny
https://harmony.cs.cornell.edu/code/gpu.hny
https://harmony.cs.cornell.edu/code/qsort.hny
https://harmony.cs.cornell.edu/code/qsorttest.hny

14.1 [code/rwlock cv fair.hny] Reader/Writer Lock implementation addressing fairness
(part 1) . 98

14.2 [code/rwlock cv fair.hny] Reader/Writer Lock implementation addressing fairness
(part 2) . 99

15.1 [code/Diners.hny] Dining Philosophers . 102
15.2 [code/DinersCV.hny] Dining Philosophers that grab both forks at the same time . . 103
15.3 [code/DinersAvoid.hny] Dining Philosophers solutions that avoids getting into a

deadlock by allowing at most N–1 philosophers to start eating at a time 105
15.4 [code/bank.hny] Bank accounts . 106

16.1 Depiction of three actors. The producer does not receive messages. 107
16.2 [code/counter.hny] An illustration of the actor approach 108

17.1 [code/barrier demo.hny] Parallel dot product using barrier implementation 111
17.2 [code/barrier test.hny] Testing the barrier synchronization interface 112
17.3 [code/barrier once.hny] A single-use barrier specification 112
17.4 [code/barrier broken.hny] An incorrect barrier specification 113
17.5 [code/barrier double.hny] Barrier specification using the double turnstile approach . 113
17.6 [code/barrier.hny] Barrier specification . 114
17.7 [code/barrier cv.hny] Barrier implementation . 115
17.8 [code/bsort.hny] Parallel bubble sort . 116

18.1 [code/rollercoaster.hny] Modeling a roller coaster . 118

19.1 [code/file.hny] Specification of the file system . 121
19.2 [code/file btest.hny] Test program for a concurrent file system 122
19.3 [code/disk.hny] Specification of a disk . 123
19.4 The file system data structure: (a) disk layout (1 superblock, n blocks, m inode

blocks, 4 inodes per block); (b) inode for a file with 3 data blocks 124
19.5 [code/file inode.hny] File system implementation preamble 125
19.6 [code/file inode.hny] File system interface implementation 126
19.7 [code/file inode.hny] File server and worker threads 127
19.8 [code/file inode.hny] File system initialization . 127
19.9 [code/file inode.hny] File system utility functions . 128
19.10[code/file inode.hny] Handling of file read requests 129
19.11[code/file inode.hny] Handling of file write and delete requests 130

20.1 [code/trap.hny] How to use trap . 133
20.2 [code/trap2.hny] A race condition with interrupts . 133
20.3 [code/trap3.hny] Locks do not work with interrupts 134
20.4 [code/trap4.hny] Disabling and enabling interrupts 135
20.5 [code/trap5.hny] Example of an interrupt-safe method 136
20.6 [code/trap6.hny] Code that is both interrupt-safe and thread-safe 137

21.1 [code/hw.hny] Non-blocking queue . 140

7

https://harmony.cs.cornell.edu/code/rwlock_cv_fair.hny
https://harmony.cs.cornell.edu/code/rwlock_cv_fair.hny
https://harmony.cs.cornell.edu/code/Diners.hny
https://harmony.cs.cornell.edu/code/DinersCV.hny
https://harmony.cs.cornell.edu/code/DinersAvoid.hny
https://harmony.cs.cornell.edu/code/bank.hny
https://harmony.cs.cornell.edu/code/counter.hny
https://harmony.cs.cornell.edu/code/barrier_demo.hny
https://harmony.cs.cornell.edu/code/barrier_test.hny
https://harmony.cs.cornell.edu/code/barrier_once.hny
https://harmony.cs.cornell.edu/code/barrier_broken.hny
https://harmony.cs.cornell.edu/code/barrier_double.hny
https://harmony.cs.cornell.edu/code/barrier.hny
https://harmony.cs.cornell.edu/code/barrier_cv.hny
https://harmony.cs.cornell.edu/code/bsort.hny
https://harmony.cs.cornell.edu/code/rollercoaster.hny
https://harmony.cs.cornell.edu/code/file.hny
https://harmony.cs.cornell.edu/code/file_btest.hny
https://harmony.cs.cornell.edu/code/disk.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/trap.hny
https://harmony.cs.cornell.edu/code/trap2.hny
https://harmony.cs.cornell.edu/code/trap3.hny
https://harmony.cs.cornell.edu/code/trap4.hny
https://harmony.cs.cornell.edu/code/trap5.hny
https://harmony.cs.cornell.edu/code/trap6.hny
https://harmony.cs.cornell.edu/code/hw.hny

22.1 [code/abp.hny] Alternating Bit Protocol . 143
22.2 [code/abptest.hny] Test code for alternating bit protocol 144

23.1 [code/leader.hny] A leader election protocol on a ring 147

24.1 [code/2pc.hny] Two Phase Commit protocol: code for banks 150
24.2 [code/2pc.hny] Two Phase Commit protocol: code for transaction coordinators . . . 151

25.1 [code/rsm.hny] Replicated State Machine . 155
25.2 The DFA generated by Figure 25.1 when NOPS=2 and NREPLICAS=2 156
25.3 [code/chain.hny] Chain Replication (part 1) . 157
25.4 [code/chain.hny] Chain Replication (part 2) . 158

26.1 [code/chainaction.hny] Chain Replication specification using actions (part 1) 161
26.2 [code/chainaction.hny] Chain Replication specification using actions (part 2) 162

27.1 [code/register.hny] An atomic read/write register . 165
27.2 [code/abdtest.hny] Behavioral test for atomic read/write registers and the output for

the case that NREADERS = NWRITERS = 1 . 166
27.3 [code/abd.hny] An implementation of a replicated atomic read/write register 167

28.1 [code/consensus.hny] Distributed consensus code and behavior DFA 170
28.2 [code/bosco.hny] A crash-tolerant consensus protocol 172
28.3 The behavior DFA for Figure 28.2 . 173
28.4 [code/bosco2.hny] Reducing the state space . 175

29.1 [code/paxos.hny] A version of the Paxos protocol, Part 1 177
29.2 [code/paxos.hny] A version of the Paxos protocol, Part 2 178

30.1 [code/needhamschroeder.hny] Needham-Schroeder protocol and an attack 181

A.1 Using save and go to implement fork() . 193
A.2 [code/stacktest.hny] Testing a stack implementation. 203
A.3 [code/stack1.hny] Stack implemented using a dynamically updated list. 204
A.4 [code/stack2.hny] Stack implemented using static lists. 204
A.5 [code/stack3.hny] Stack implemented using a recursive tuple data structure. 204
A.6 [code/stack4.hny] Stack implemented using a linked list. 205

F.1 [code/queuelin.hny] Queue implementation with linearization points 224
F.2 [code/qtestconc.hny] Concurrent queue test . 225

H.1 Venn diagram classifying all states and a trace . 231

I.1 [code/rwlock sbs.hny] Reader/Writer Lock using Split Binary Semaphores 236
I.2 [modules/hoare.hny] Implementation of Hoare monitors 238
I.3 [code/boundedbuffer hoare.hny] Bounded Buffer implemented using a Hoare monitor 239

8

https://harmony.cs.cornell.edu/code/abp.hny
https://harmony.cs.cornell.edu/code/abptest.hny
https://harmony.cs.cornell.edu/code/leader.hny
https://harmony.cs.cornell.edu/code/2pc.hny
https://harmony.cs.cornell.edu/code/2pc.hny
https://harmony.cs.cornell.edu/code/rsm.hny
https://harmony.cs.cornell.edu/code/chain.hny
https://harmony.cs.cornell.edu/code/chain.hny
https://harmony.cs.cornell.edu/code/chainaction.hny
https://harmony.cs.cornell.edu/code/chainaction.hny
https://harmony.cs.cornell.edu/code/register.hny
https://harmony.cs.cornell.edu/code/abdtest.hny
https://harmony.cs.cornell.edu/code/abd.hny
https://harmony.cs.cornell.edu/code/consensus.hny
https://harmony.cs.cornell.edu/code/bosco.hny
https://harmony.cs.cornell.edu/code/bosco2.hny
https://harmony.cs.cornell.edu/code/paxos.hny
https://harmony.cs.cornell.edu/code/paxos.hny
https://harmony.cs.cornell.edu/code/needhamschroeder.hny
https://harmony.cs.cornell.edu/code/stacktest.hny
https://harmony.cs.cornell.edu/code/stack1.hny
https://harmony.cs.cornell.edu/code/stack2.hny
https://harmony.cs.cornell.edu/code/stack3.hny
https://harmony.cs.cornell.edu/code/stack4.hny
https://harmony.cs.cornell.edu/code/queuelin.hny
https://harmony.cs.cornell.edu/code/qtestconc.hny
https://harmony.cs.cornell.edu/code/rwlock_sbs.hny
https://harmony.cs.cornell.edu/modules/hoare.hny
https://harmony.cs.cornell.edu/code/boundedbuffer_hoare.hny

Chapter 1

On Concurrent Programming

Programming with concurrency is hard. Concurrency can make programs faster than sequential
ones, but having multiple threads read and update shared variables concurrently and synchronize
with one another makes programs more complicated than programs where only one thing happens
at a time.

Why are concurrent programs more complicated than sequential ones? There are, at least, two
reasons:

� The execution of a sequential program is usually deterministic: If you run the program twice
with the same input, the same output will be produced. Bugs are reproducible and thus
easy to track down, for example by instrumenting the program. They are called Bohrbugs.
However, the output of running concurrent programs depends on how the execution of the
various threads are interleaved. Some bugs may occur only occasionally and may never occur
when the program is instrumented to find them. We call these Heisenbugs—overhead caused
by instrumentation leads to timing changes that can make such bugs less likely to cause havoc.

� In a sequential program, each statement and each function can be thought of as happening
atomically (indivisibly) because there is no other activity interfering with their execution.
Even though a statement or function may be compiled into multiple machine instructions,
they are executed back-to-back until completion. Not so with a concurrent program, where
other threads may update memory locations while a statement or function is being executed.

The lack of determinism and atomicity in concurrent programs make them not only hard to reason
about, but also hard to test. Running the same test of concurrent code twice is likely to produce
two different results. More problematically, a test may trigger a bug only for certain “lucky”
executions. Due to the probabilistic nature of concurrent code, some bugs may be highly unlikely
to get triggered even when running a test millions of times. And even if a bug does get triggered,
the source of the bug may be hard to find because the incorrect execution is hard to reproduce.

This book is intended to help people with understanding and developing concurrent code, which
includes programs for distributed systems. In particular, the book comes with a tool called Harmony
that helps with testing concurrent code. The approach is based on model checking [CES86]: Instead

9

of relying on luck, Harmony will run all possible executions of a particular test program. So, even
if a bug is unlikely to occur, if the test can expose the bug it will. Moreover, if the bug is found,
the model checker precisely shows how to trigger the bug and will try to minimize the number of
steps.

Model checking is not a replacement for formal verification. Formal verification proves that a
program is correct. Model checking only verifies that a program is correct for some model. Think of
a model as a test program. Because model checking tries every possible execution, the test program
needs to be simple—otherwise it may take longer than we care to wait for or the model checker may
run out of memory. In particular, the model needs to have a relatively small number of reachable
states.

If model checking does not prove a program correct, why is it useful? To answer that question,
consider a sorting algorithm. Suppose we create a test program, a model, that tries sorting all lists
of up to five numbers chosen from the set { 1, 2, 3, 4, 5 }. Model checking proves that for those
particular scenarios the sorting algorithm works: The output is a sorted permutation of the input.
In some sense it is an excellent test: It will have considered all corner cases, including lists where
all numbers are the same, lists that are already sorted or reversely sorted, etc. If there is a bug in
the sorting algorithm, most likely it will be triggered and the model checker will produce a scenario
that simplifies finding the source of the bug.

However, if the model checker does not find any bugs, we do not know for sure that the algorithm
works for lists of more than five numbers or for lists that have values other than the numbers 1
through 5. Still, we would expect that the likelihood that there are bugs remaining in the sorting
algorithm is small. That said, it would be easy to write a program that sorts all lists of up to five
numbers correctly but fails to do so for a list of 6 numbers. (Hint: Simply use an if statement.)
The model checker would not find a bug in this adversarial program.

While model checking does not in general prove an algorithm correct, it can help with proving an
algorithm correct. The reason is that many correctness properties can be proved using invariants:
Predicates that must hold for every state in the execution of a program. A model checker can find
violations of proposed invariants when evaluating a model and provide valuable early feedback to
somebody who is trying to construct a proof, even an informal one. We will include examples of
such invariants as they often provide excellent insight into why a particular algorithm works.

So, what is Harmony? Harmony is a concurrent programming and specification language with a
model checker. Harmony was designed to teach the basics of concurrent and distributed program-
ming, but it is also useful for testing new concurrent algorithms or even sequential and distributed
algorithms. Harmony programs are not intended to be “run” like programs in most other pro-
gramming languages—instead Harmony programs are model checked to test that the program has
certain desirable properties and does not suffer from bugs.

The syntax and semantics of the Harmony programming language are similar to that of Python.
Python is familiar to many programmers and is easy to learn and use. We will assume that the
reader is familiar with the basics of Python programming. We also will assume that the reader
understands some basics of machine architecture and how programs are executed. For example, we
assume that the reader is familiar with the concepts of CPU, memory, register, stack, and machine
instructions.

Harmony is heavily influenced by Leslie Lamport’s work on TLA+, TLC, and PlusCal [Lam02,
Lam09], Gerard Holzmann’s work on Promela and SPIN [Hol11], and University of Washington’s
DSLabs system [MWA+19]. Some of the examples in this book are derived from those sources. Har-

10

mony is designed to have a lower learning curve than those systems, but may not be as powerful for
specific problems. When you finish this book and want to learn more, we strongly encourage check-
ing those out. Another excellent resource is Fred Schneider’s book “On Concurrent Programming”
[Sch97]. (This chapter is named after that book.)

The book proceeds as follows:

� Chapter 2 introduces the Harmony programming language.

� Chapter 3 illustrates the problem of concurrent programming through a simple example in
which two threads are concurrently incrementing a shared variable.

� Chapter 4 presents the Harmony virtual machine to understand the problem underlying con-
currency better.

� Chapter 5 introduces the concept of a critical section and presents various flawed implemen-
tations of critical sections to demonstrate that implementing a critical section is not trivial.
The chapter also introduces Peterson’s Algorithm, an elegant (although not very efficient or
practical) solution to implementating a critical section.

� Chapter 6 gives some more details on the Harmony language needed for the rest of the book.

� Chapter 7 talks about how Harmony can be used as a specification language. The chapter
introduces how to specify atomic constructs such as locks.

� Chapter 8 looks at various ways in which a lock specification can be implemented.

� Chapter 9 gives an introduction to building concurrent data structures.

� Chapter 10 discusses approaches to testing concurrent code in Harmony.

� Chapter 11 instead goes into how to find a bug in concurrent code using the Harmony output.

� Chapter 12 talks about threads having to wait for certain conditions. As examples of condi-
tional waiting, the chapter presents the reader/writer lock problem and the bounded buffer
problem.

� Chapter 13 presents condition variables, a synchronization construct to simplify efficient con-
ditional waiting.

� Chapter 14 talks about starvation: The problem that in some synchronization approaches
threads may not be able to get access to a resource they need.

� Chapter 15 describes deadlock where a set of threads are indefinitely waiting for one another
to release a resource.

� Chapter 16 presents the actor model and message passing as an approach to synchronization.

� Chapter 17 describes barrier synchronization, useful in high-performance computing applica-
tions such as parallel simulations.

� Chapter 18 delves deeper into barrier synchronization for situations when there are more
threads than the barrier requires.

11

� Chapter 19 presents a concurrent file system as as larger example of a concurrent program.

� Chapter 20 discusses how to handle interrupts, a problem closely related to—but not the same
as—synchronizing threads.

� Chapter 21 introduces non-blocking or wait-free synchronization algorithms, which prevent
threads waiting for one another more than a bounded number of steps.

� Chapter 22 presents a problem and a solution to the distributed systems problem of having
two threads communicate reliably over an unreliable network.

� Chapter 23 presents a protocol for electing a leader on a ring of processors, where each
processor is uniquely identified and only knows its successor on the ring.

� Chapter 24 describes atomic database transactions and the two-phase commit protocol used
to implement them.

� Chapter 25 describes state machine replication and the chain replication protocol to support
replication.

� Chapter 26 describes an alternative way to write concurrent and distributed specifications in
Harmony, using chain replication as an example.

� Chapter 27 presents a protocol for a fault-tolerant replicated object that supports only read
and write operations.

� Chapter 28 demonstrates a fault-tolerant distributed consensus algorithm (a.k.a. protocol)
expressed in Harmony.

� Chapter 29 shows how one can specify and check the well-known Paxos consensus protocol.

� Chapter 30 demonstrates using Harmony to find a (known) bug in the original Needham-
Schroeder authentication protocol.

If you already know about concurrent and distributed programming and are just interested
in a “speed course” on Harmony, I would recommend reading Chapter 2, Chapter 4, Chapter 6,
Chapter 7, and Chapter 9. The appendices contain various details about Harmony itself, including
an appendix on convenient Harmony modules (Appendix B), and an appendix that explains how
Harmony works (Appendix D).

12

Chapter 2

Hello World!

The first programming book that I read cover to cover was The C Programming Language (first
edition) by Brian W. Kernighan and Dennis M. Ritchie, which was around 1980. I did not know
at the time that 10 years later Dennis, the designer of the C programming language, would be my
boss at AT&T Bell Labs in Murray Hill, NJ, while Brian would be my colleague in the same lab.
The first C program in the book printed the string “hello, world”. Since then, most programming
tutorials for pretty much any programming language start with that example.

Harmony, too, has a Hello World program. Figure 2.1 shows the program and the corresponding
output. After installation (see https://harmony.cs.cornell.edu), you can run Harmony as follows
from the command line:

$ harmony code/hello1.hny

Try it out (here $ represents a shell prompt). For this to work, make sure harmony is in your
command shell’s search path. The code for examples in this book can be found in the code folder
under the name listed in the caption of the example. If you need to, you can download the sources
separately from https://harmony.cs.cornell.edu/sources.zip. In this case, the file code/hello1.hny

contains the code in Figure 2.1. The output is a Deterministic State Machine (DFA). The green
circle represents the initial state and the double circle represents the final state. There is one
transition, labeled with the string “hello world”. The DFA describes (or recognizes) all possible
outputs that the program can generate. In this case, there is only one.

1 print "hello world"

Figure 2.1: [code/hello1.hny] Hello World!

13

https://harmony.cs.cornell.edu
https://harmony.cs.cornell.edu/sources.zip
https://harmony.cs.cornell.edu/code/hello1.hny

1 print choose { "hello", "world" }

Figure 2.2: [code/hello3.hny] Harmony program with two possible outputs

1 while choose { False, True }:
2 print "hello world"

Figure 2.3: [code/hello4.hny] Harmony program with an infinite number of possible outputs

14

https://harmony.cs.cornell.edu/code/hello3.hny
https://harmony.cs.cornell.edu/code/hello4.hny

1 def p(s):
2 print s
3

4 p("hello")
5 p("world")

1 def p(s):
2 print s
3

4 spawn p("hello")
5 spawn p("world")

(a) [code/hello5.hny] [code/hello6.hny]

Figure 2.4: Demonstrating Harmony methods and threads

But programs can usually have more than one execution and produce multiple different outputs
as a result. This is usually as a result of different inputs, but Harmony programs do not have
inputs. Instead, Figure 2.2 demonstrates nondetermistic choice in Harmony programs. In this
case, the program chooses to print either “hello” or “world”. The corresponding DFA captures
both possibilities. You can think of the choose operator as enumerating all possible inputs to the
program.

Figure 2.3 shows a program that has an infinite number of possible outputs by using a loop with
a non-deterministic stopping condition. Harmony usually requires that any program must be able
to terminate, so the loop is conditioned on a nondeterministic choice between False and True. The
possible outputs consist of zero or more copies of the string “hello world”. Note that this single
state DFA (where the initial state and the final state happen to be the same) captures an infinite
number of possible executions of the program.

Figure 2.4 demonstrates methods and threads in Harmony. In Figure 2.4(a), the code simply
prints the strings “hello” and “world”, in that order. Notice that this leads to an intermediate state
after “hello” is printed but before “world” is. However, there is still only one execution possible.
Figure 2.4(b) shows two threads, one printing “hello” and one printing “world”. Because the
threads run concurrently, the program can either output “hello world” or “world hello”. Printing
in Harmony is atomic, so “hweolrllod” is not a possible output.

Figure 2.5 shows two threads, one printing the strings “hello” and “Robbert”, while the other
prints “hello” and “Lesley”. Now there are four possible outputs depending on how the two threads
are interleaved, including “hello hello Lesley Robbert”. This is probably not what the programmer
wanted. Figure 2.6 shows another important feature of Harmony: atomic blocks. The program
is similar to Figure 2.5, but the programmer specified that the two print statements in a thread
should be executed as an atomic unit. As a result, there are only two interleavings possible.

Harmony is a programming language that borrows much of Python’s syntax. Like Python, Har-
mony is an imperative, dynamically typed programming language. There are also some important
differences:

� Harmony does not support floating point;

15

https://harmony.cs.cornell.edu/code/hello5.hny
https://harmony.cs.cornell.edu/code/hello6.hny

1 def hello(name):
2 print "hello"
3 print name
4

5 spawn hello("Lesley")
6 spawn hello("Robbert")

Figure 2.5: [code/hello7.hny] Various interleavings of threads

1 def hello(name):
2 atomically:
3 print "hello"
4 print name
5

6 spawn hello("Lesley")
7 spawn hello("Robbert")

Figure 2.6: [code/hello8.hny] Making groups of operations atomic reduces interleaving

16

https://harmony.cs.cornell.edu/code/hello7.hny
https://harmony.cs.cornell.edu/code/hello8.hny

1 const N = 10
2

3 def triangle(n) returns result : # computes the n’th triangle number
4 result = 0
5 for i in {1..n}: # for each integer from 1 to n inclusive
6 result += i # add i to result
7

8 x = choose {0..N} # select an x between 0 and N inclusive
9 assert triangle(x) == x * (x + 1) / 2

Figure 2.7: [code/triangle.hny] Computing triangle numbers

$ harmony --noweb code/triangle.hny

� Phase 1: compile Harmony program to bytecode
� Phase 2: run the model checker (nworkers = 6)

– 13 states (time 0.00s, mem=0.000GB)
– 12/12 computations/edges
– 2 rounds, 98 values

� Phase 3: Scan states
� Phase 4: Further analysis

– No issues found
� Phase 4a: convert to DFA
� Phase 5: write results to code/triangle.hco
� Phase 6: loading code/triangle.hco

open file://.../code/triangle.htm for detailed information

Figure 2.8: Running the code in Figure 2.7

� Python is object-oriented, supporting classes with methods and inheritance; Harmony has
objects but does not support classes. Harmony supports pointers, allowing construction of
complicated data structures.

� In Python, lists, dictionaries, and sets are (mutable) objects. In Harmony, they are (im-
mutable) values.

There are also less important differences that you will discover as you get more familiar with
programming in Harmony.

Figure 2.7 shows another example of a Harmony program. The example is a sequential program
and has a method triangle that takes an integer number as argument. The method declares a
variable called result that eventually contains the result of the method (there is no return statement
in Harmony). The method also has a bound variable called n containing the value of the argument.
The { x..y } notation represents a set containing the numbers from x to y (inclusive). (Harmony

17

https://harmony.cs.cornell.edu/code/triangle.hny

$ harmony -c N=100 –noweb code/triangle.hny
� Phase 1: compile Harmony program to bytecode
� Phase 2: run the model checker (nworkers = 6)

– 103 states (time 0.00s, mem=0.000GB)
– 102/102 computations/edges
– 2 rounds, 728 values

� Phase 3: Scan states
� Phase 4: Further analysis

– No issues found
� Phase 4a: convert to DFA
� Phase 5: write results to code/triangle.hco
� Phase 6: loading code/triangle.hco

open file://.../code/triangle.htm for detailed information

Figure 2.9: Running the code in Figure 2.7 for N = 100

does not have a range operator like Python.) The last two lines in the program are the most
interesting. The first assigns to x some unspecified value in the range 0..N and the second verifies
that triangle(x) equals x(x+ 1) / 2.

Running this Harmony program (Figure 2.8) will try all possible executions, which includes all
possible values for x. The results from running the Harmony model checker are output in Markdown

format. Markdown is a lightweight markup language for creating formatted text. Usually Harmony
also pops up a web browser window to show the DFA and detailed results—the --noweb flag tells
Harmony not to do that.

The assert statement checks that the output is correct. If the program is correct, Harmony
reports the size of the “state graph” (13 states in this case). If not, Harmony also reports what
went wrong, typically by displaying a summary of an execution in which something went wrong.

In Harmony, constants have a default specified value, but those can be overridden on the com-
mand line using the -c option. Figure 2.9 shows how to test the code for N = 100.

Exercises

2.1 Write a Harmony program that uses choose instead of spawn to create the same output DFA
as Figure 2.4(b).

2.2 Add the line print(x, triangle(x)) to the end of the program and create an output png file.
Before you look at it, what do you think the output should look like?

2.3 See what happens if, instead of initializing result to 0, you initialize it to 1. (You do not need
to understand the error report at this time. They will be explained in more detail in Chapter 4.)

2.4 Write a Harmony program that computes squares by repeated adding. So, the program should
compute the square of x by adding x to an initial value of 0 x times.

18

Chapter 3

The Problems with Concurrent
Programming

Concurrent programming, a.k.a. multithreaded programming, involves multiple threads running
in parallel while sharing variables. As mentioned before, there are two problems with concurrent
programming: non-determinism and non-atomicity.

We shall first consider non-determism. Figure 3.1 shows two programs. Program (a) is sequen-
tial. It sets x to True, asserts that x = True and finally sets x to False. If you run the program
through Harmony, it will not find any problems because there is only one execution possible and
1) in that execution the assertion does not fail and 2) the execution terminates. Program (b) is
concurrent—it executes methods f() and g() in parallel. If method g() runs and completes before
f(), then the assertion in f() will fail when f() runs. This problem is an example of non-determinism:
Methods f() and g() can run in either order. In one order, the assertion fails, while in the other
it does not. But since Harmony checks all possible executions, it will always find the problematic
one.

Figure 3.1(c) shows the output of running Figure 3.1(b) through Harmony. Underneath the
line, there is a summary of what happened in one of its executions. First, the initialization thread
(T0) runs and sets the global variable x to True. Then, the thread running g() runs to completion,
setting x to False. Finally, the thread running f() runs, and the assertion fails.

Figure 3.2 presents Harmony programs that illustrates non-atomicity. Again, the program on
the left is sequential and the program on the right is concurrent. The Harmony finally statement
is similar to an assert statement, except that the predicate is checked after all threads have termi-
nated. Method f() increments variable x, which is initialized to 0. This time non-determinism does
not play a role. Since f() is invoked twice, one might expect that x = 2 at the end of the execution
of both programs. However, running the concurrent program through Harmony shows that this is
not necessarily the case.

� Can you figure out why? Consider that load and store instructions of the under-
lying virtual machine architecture are atomic (indivisible).

19

1 x = True
2

3 def f(): assert x
4 def g(): x = False
5

6 f()
7 g()

1 x = True
2

3 def f(): assert x
4 def g(): x = False
5

6 spawn f()
7 spawn g()

(a) [code/prog1.hny] Sequential (b) [code/prog2.hny] Concurrent

Summary: something went wrong in an execution
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()
– Line 1: Initialize x to True
– Thread terminated

� Schedule thread T2: g()
– Line 4: Set x to False (was True)
– Thread terminated

� Schedule thread T1: f()
– Line 3: Harmony assertion failed

(c) The output of running the concurrent code

Figure 3.1: The problem with non-determinism

20

https://harmony.cs.cornell.edu/code/prog1.hny
https://harmony.cs.cornell.edu/code/prog2.hny

1 x = 0
2

3 def f(): x += 1
4

5 f()
6 f()
7

8 finally x == 2

1 x = 0
2

3 def f(): x += 1
4

5 spawn f()
6 spawn f()
7

8 finally x == 2

(a) [code/prog3.hny] Sequential (b) [code/prog4.hny] Concurrent

Summary: something went wrong in an execution
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()
– Line 1: Initialize x to 0
– Thread terminated

� Schedule thread T1: f()
– Preempted in f() about to store 1 into x in line 3

� Schedule thread T2: f()
– Line 3: Set x to 1 (was 0)
– Thread terminated

� Schedule thread T1: f()
– Line 3: Set x to 1 (unchanged)
– Thread terminated

� Schedule thread T3: finally()
– Line 8: Harmony assertion failed

(c) The output of running the concurrent code

Figure 3.2: The problem with non-atomicity

21

https://harmony.cs.cornell.edu/code/prog3.hny
https://harmony.cs.cornell.edu/code/prog4.hny

1 x = 0
2

3 def f():
4 var register = x ;
5 register += 1
6 x = register

7

8 spawn f()
9 spawn f()

10

11 finally x == 2

Figure 3.3: [code/prog5.hny] What actually happens in Figure 3.2(b)

What is going on is that the Harmony program is compiled to machine instructions, and it is
the machine instructions that are executed by the underlying Harmony machine. The details of
this appear in Chapter 4, but suffice it to say that the machine has instructions that load values
from memory and store values into memory. Importantly, the machine does not have instructions
to atomically increment or decrement values in shared memory locations. So, to increment a value
in memory, the machine must do at least three machine instructions. Figure 3.3 illustrates this.
(The var statement declares a new local variable called register.) Conceptually, the machine

1. loads the value of x from its memory location into a register;

2. adds 1 to the register;

3. stores the new value into the memory location of x.

When running multiple threads, each essentially runs an instantiation of the machine, and they
do so in parallel. As they execute, their machine instructions are interleaved in unspecified and
often unpredictable ways. A program is correct if it works for all possible interleavings of threads.
Harmony will try all interleavings and report an error even if only one of those interleavings fails.

If the threads run one at a time to completion, then x will be incremented twice and ends up
being 2. However, the following is also a possible interleaving of the two threads, which we will call
T1 and T2 respectively:

1. T1 loads the value of x, which is 0;

2. T2 loads the value of x, which is still 0;

3. T2 adds 1 to the value that it loaded (0), and stores 1 into x ;

4. T1 adds 1 to the value that it loaded (0), and stores 1 into x ;

The result in this particular interleaving is that x ends up being 1. This is known as a race
condition. When running a program with Harmony, it will report violations of assertions. Har-
mony also provides an example of an interleaving, like the one above, in which an assertion fails.
Figure 3.2(c) shows the output of running Figure 3.2(b) through Harmony.

22

https://harmony.cs.cornell.edu/code/prog5.hny

If one thinks of the assertion as providing the specification of the program, then clearly its
implementation does not satisfy its specification. Either the specification or the implementation
(or both) must have a bug. We could change the specification by changing the assertion as follows:

finally (x == 1) or (x == 2)

This would fix the issue,1 but more likely it is the program that must be fixed, not the specifi-
cation.

The exercises below have you try the same thing (having threads concurrently increment an
integer variable) in Python. As you will see, the bug is not easily triggered when you run a Python
version of the program. But in Harmony Murphy’s Law applies: If something can go wrong, it will.
Usually that is not a good thing, but in Harmony it is. Deterministically triggering bugs allows you
to find bugs in your concurrent programs much more easily than using a conventional programming
environment.

Exercises

3.1 Harmony programs can usually be easily translated into Python by hand using minor modifi-
cations. For example, Figure 3.4 is a Python version of Figure 3.2.

1. Run Figure 3.4 using Python. Does the assertion fail?

2. Using a script, run Figure 3.4 1000 times. For example, if you are using the bash shell (in
Linux or Mac OS X, say), you can do the following:

for i in {1..1000}

do

python inc.py

done

If you’re using Windows, the following batch script does the trick:

FOR /L %%i IN (1, 1, 1000) DO python inc.py

PAUSE

How many times does the assertion fail (if any)?

3.2 Figure 3.5 is a version of Figure 3.4 that has each thread increment x N times. Also, the code
slows down incrementing a bit by using a method. Run Figure 3.5 10 times (using Python). Report
how many times the assertion fails and what the value of x was for each of the failed runs. Also
experiment with other values of N. How large does N need to be for assertions to fail? (Try powers
of 10 for N.)

1Actually, Harmony still complains, this time about a data race, about which you will learn in Chapter 4.

23

1 import threading

2

3 x = 0

4

5 def f():

6 global x

7 x += 1

8

9 t1 = threading.Thread(target=f)

10 t2 = threading.Thread(target=f)

11 t1.start()

12 t2.start()

13 t1.join()

14 t2.join()

15 assert x == 2

Figure 3.4: [python/inc.py] Python implementation of Figure 3.2(b)

3.3 Can you think of a fix to Figure 3.2(b)? Try one or two different fixes and run them through
Harmony. Do not worry about having to come up with a correct fix at this time—the important
thing is to develop an understanding of concurrency. (Also, you do not get to use the atomically
keyword or a lock, yet.)

24

https://harmony.cs.cornell.edu/python/inc.py

1 import threading

2

3 N = 1000

4 x = 0

5

6 def inc(v):

7 return v + 1

8

9 def f():

10 global x

11 for i in range(N):

12 x = inc(x)

13

14 t1 = threading.Thread(target=f)

15 t2 = threading.Thread(target=f)

16 t1.start()

17 t2.start()

18 t1.join()

19 t2.join()

20 assert x == 2*N

Figure 3.5: [python/incmany.py] Using Python to increment N times

25

https://harmony.cs.cornell.edu/python/incmany.py

Chapter 4

The Harmony Virtual Machine

Harmony programs are compiled to Harmony bytecode (a list of machine instructions for a virtual
machine), which in turn is executed by the Harmony virtual machine (HVM). The Harmony
compiler, harmony, places the bytecode for file x.hny in file x.hvm. The model checker (called
Charm) executes the code in x.hvm and places its output in a file called x.hco. From the x.hco file,
harmony creates a detailed human-readable output file in x.hvb and an interactive HTML file called
x.htm. The x.htm file is automatically opened in your default web browser unless you specify the
--noweb flag to harmony.

To understand the problem of concurrent computing, it is important to have a basic under-
standing of machine instructions, and in our case those of the HVM.

Harmony Values

Harmony programs, and indeed the HVM, manipulate Harmony values. Harmony values are recur-
sively defined: They include

� booleans (False and True),

� integers (but not floating point numbers),

� strings (enclosed by single or double quotes),

� sets of Harmony values,

� lists of Harmony values,

� dictionaries that map Harmony values to other Harmony values.

Strings that start with a letter or an underscore and only contain letters, digits, and underscores
can be written without quotes by preceding them with a dot. So, .example is the same string as
"example".

In Harmony (unlike Python), lists and tuples are the same type. As in Python, you can create
a singleton tuple (or list) by including a comma. For example, (1,) is a tuple consisting just of the
number 1. Importantly, (1) = 1 6= (1,). Because, square brackets and parentheses work the same

26

in Harmony, [a, b, c] (which looks like a Python list) is the same Harmony value as (a, b, c) (which
looks like a Python tuple). So, if x = [False, True], then x [0] = False and x [1] = True, just
like in Python. However, when creating a singleton list, make sure you include the comma, as in
[False,]. The expression [False] just means False.

A dictionary maps keys to values. Unlike Python, which requires that keys must be hashable,
any Harmony value can be a key, including another dictionary. Dictionaries are written as {k0 :
v0, k1 : v1, ...}. The empty dictionary is written as {:}. If d is a dictionary, and k is a key, then
the following expression retrieves the Harmony value that k maps to in d :

d k

The meaning of d a b ... is (((d a) b) ...). This notation is unfamiliar to Python programmers,
but in Harmony square brackets can be used in the same way as parentheses, so you can express
the same thing in the form that is familiar to Python programmers:

d [k]

However, if d = { .count : 3 }, then you can write d.count (which has value 3) instead of having
to write d [.count] or d ["count"] (although any of those will work). Thus a dictionary can be made
to look much like a Python object.

Harmony is not an object-oriented language, so objects don’t have built-in methods. However,
Harmony does have some powerful operators to make up for some of that. For example, dictionaries
have two handy unary operators: If d is a dictionary, then keys d (or equivalently keys(d)), returns
the set of keys, and len d returns the size of this set.

Section A.1 provides details on all the types of values that Harmony supports.

Harmony Bytecode

A Harmony program is translated into HVM bytecode. While the HVM is designed for efficient
model checking, its architecture is nonetheless reminiscent of conventional computers and virtual
machines such as the Java Virtual Machine.

Instead of bits and bytes, a HVM manipulates Harmony values. A HVM has the following
components:

� Code: This is an immutable and finite list of HVM instructions, generated from a Harmony
program. The types of instructions will be described later.

� Shared memory: A HVM has just one memory location containing a Harmony dictionary
value.

� Threads: Any thread can spawn an unbounded number of other threads and threads may
terminate. Each thread has a program counter (PC) that indexes into the code, a stack of
Harmony values, and a private register that contains a Harmony dictionary value.

The register of a thread contains the local variables of the method that the thread is currently
executing. The register is saved and restored by method invocations. The state of a thread is called
a context (a.k.a. continuation): It contains the values of the thread’s program counter, stack, and

27

0 Frame __init__()

1 Push 0

2 Store x

3 Jump 10

4 Frame f()

5 Load x

6 Push 1

7 2-ary +

8 Store x

9 Return

Figure 4.1: The first part of the HVM bytecode corresponding to Figure 3.2(b)

register. The HVM state consists of the value of its memory and the multiset (or bag) of contexts.
It is a multiset of contexts because two threads can have the same context at the same time.

It may seem strange that there is only one memory location. However, this is not a limitation
because Harmony values are unbounded trees. The shared memory is a dictionary that maps strings
(names of shared variables) to other Harmony values. We call this a directory. Thus, a directory
represents the state of a collection of variables named by the strings.

Because directories are Harmony values themselves, and Harmony values include dictionaries
and lists that themselves contain other Harmony values, directories can be organized into a tree.
Each node in a directory tree is then identified by a sequence of Harmony values, like a path name
in the file system hierarchy. We call such a sequence an address. For the example program shown
in Figure 3.2, the memory is a dictionary with a single entry: .x, and its address is the singleton
sequence [.x,]. As we will see later, an address is itself a Harmony value.

The program in Figure 3.2(b) is compiled into the HVM bytecode that begins as shown in
Figure 4.1. You can obtain a listing of this code by invoking harmony with the -a flag:

harmony -a code/prog4.hny

Each thread in the HVM is predominantly a stack machine, but it also has a register that
contains the values of the local variables of the method that the thread is currently executing. Like
shared memory, the register contains a dictionary so it can represent the values of multiple named
variables. All individual instructions are atomically executed. The Harmony memory model is
sequentially consistent : all accesses are one at a time and consistent with the program order.

The program of Figure 3.2(b) consists of a top-level method known as init . This code sets
x to 0 and then spawns f twice. Execution of the bytecode begins at instruction 0 and continues
until it reaches the last instruction in the bytecode, before any threads can run. After that, the
spawned threads start executing.

Each defined method (e.g., f) as well as init starts with a Frame instruction and ends with
a Return instruction. The Frame instruction lists the name of the method and the names of its
arguments.

28

The definition of f, which appears in the middle of init at bytecode address 4, and which
will be invoked by spawning, is bypassed by the Jump 10 instruction at bytecode address 3 of the
top-level code itself. The rest of the code for init , which continues at bytecode address 10, is
not shown.

As shown in Figure 4.1, the bytecode for method f begins with the Frame instruction at bytecode
address 4 and continues with the instructions generated from x += 1 (line 3 of Figure 3.2(b)), as
follows:

� The Load instruction pushes the value of the x variable onto the stack.

� The Push instruction pushes the constant 1 onto the stack of the thread.

� 2-ary + pops two values from the stack (the value of x and 1), adds them, and pushes the
result back onto the stack.

� The Store instruction pops a Harmony value (the sum of the value of the x variable and 1)
and stores it in the x variable.

You can think of Harmony as trying every possible interleaving of threads executing instructions.
Harmony can report the following failure types:

� Safety violation: This means something went wrong with at least one of the executions of
the program that were tried. This can include a failing assertion, behavior violations, divide
by zero, using an uninitialized or non-existent variable, dividing a set by an integer, and so
on. Harmony will print a trace of the bad execution that it found (prefering short traces over
longer ones).

� Non-terminating State: Harmony found one or more states from which there does not exist
an execution such that all threads terminate. Harmony will not only print the non-terminating
state with a corresponding trace, but also the list of threads at that state, along with their
program counters.

� Behavior Violation: The program can terminate in a state not allowed by the behavioral
specification (Chapter 10).

� Active Busy Waiting: There are states in which some thread cannot make progress without
the help of another thread, but does not block (Chapter 12).

� Data Race: There are states in which two or more threads concurrently access a shared
variable, at least one of which is a store operation (Chapter 8).

Harmony checks for these types of failure conditions in the given order: If there are multiple
failure conditions, only the first is reported. Active busy waiting (Chapter 12) is not technically
an indication of a synchronization problem, but instead an indication of an inefficient solution to
a synchronization problem— one that uses up CPU cycles unnecessarily. A data race indicates
that the execution depends on the semantics of the underlying memory operations and is therefore
undesirable. Harmony also provides a warning if the set of generated behaviors does not contain
all correct behaviors, which can happen if you provide Harmony with a description of all correct
behaviors (see Chapter 10).

29

Figure 4.2: The HTML output of running Harmony on Figure 3.2(b)

If there is a failure, Harmony selects an execution that exhibits the failure and provides various
descriptions. One is the markdown output. Harmony also generates a detailed and self-explanatory
text output file (see code/prog4.hvb) and an interactive HTML file that allows the user to explore
more details of the failed execution. Open the suggested HTML file and you should see something
like Figure 4.2.

At the top, the HTML output reports the issue in red. Underneath there is a table that shows
the five turns in the execution. A turn is a finite sequence of executed instructions, all performed
by the same thread. The threads take turns until all threads have terminated or until an error
occurs. Each row in the table displays a sequence of square blocks, one block for each instruction
executed in the corresponding turn.

There is also information on what the thread is about to do at the end of its turn. The table
lists, for each turn, the value of the program counter of the thread, the values of its shared variables,
and the values that the thread has printed (none in this case).

In this case, at the end of turn 1, initialization (executed by thread T0) has completed, and the
value of variable x is 0. At the end of turn 2, thread T1 is about to store the value 1 in x, but at
that point T1 is preempted by thread T2. Thread T2 does store 1 into x in turn 3, and in turn 4,
T1 resumes and also stores 1 into x. T3 is a pseudo-thread that runs when all threads have finished
and evaluates the finally clauses.

The line of Harmony source code that is being executed is shown underneath the table.
The bottom left shows the bytecode of the program. Hovering the mouse over a machine

instruction provides a brief explanation of what the instruction does.

30

https://harmony.cs.cornell.edu/output/prog4.htm

The bottom right contains a table with the state of each thread. Status information for a thread
can include:

� runnable: the thread is runnable but not currently running. In Harmony, threads are inter-
leaved and so at most one thread is actually running;

� running: the thread is currently executing instructions;

� terminated: the thread has completed all its instructions;

� failed: the thread has encountered an error, such as violating an assertion or divide by zero;

� blocked: the thread cannot make progress until another thread has updated the shared state.
For example, this occurs when one of the implementers is waiting for the other to set its done
flag;

� atomic: the thread is in atomic mode, not allowing other threads to be scheduled. This is,
for example, the case when an assertion is being checked;

� read-only: the thread is in read-only mode, not able to modify shared state. Assertions
can execute arbitrary code including methods, but they are not allowed to modify the shared
state.

The table also displays the stack of each thread (although in the displayed example all threads
have terminated.) The stack of each thread is subdivided into two parts: The stack trace and the
stack top. A stack trace is a list of pending method invocations: Each shows the method’s name
and arguments, as well as its local variables. In this case, the f method does not invoke any other
methods, and so the list has length 1. The stack top shows the values that the currently executing
method has pushed onto the stack.

When first loaded, the HTML file shows the final state of the program’s execution. But you
can navigate to any intermediate point in various ways. For example, you can go to any point in
the execution by clicking one of the blocks. When you do, the current turn and thread will be
highlighted in yellow, while the bytecode instruction that is about to be executed is highlighted in
red. Figure 4.2 shows the final state, with the last turn and corresponding thread highlighted in
yellow.

There are also various handy keyboard shortcuts to navigate through the execution quickly:

Right arrow : go to the next bytecode instruction
Left arrow : go back to the previous bytecode instruction
Down arrow : go to the end of the current method
Up arrow : go back to the beginning of the current method
Enter (a.k.a. Return): go to the next line of Harmony source code
0 : go to the initial state

If you want to see an animation of the entire execution, one instruction at a time, you can first
select 0 and then hold down the right arrow. If you want to see the animation one line of Harmony
code at a time, hold down the enter key instead. If you hold down the down arrow key, the movie
will go by very quickly.

31

1 shared = 0
2 entered = [False, False]
3

4 def f(self):
5 entered [self] = True
6 await not entered [1 – self]
7 shared += 1
8 entered [self] = False
9

10 spawn f(0)
11 spawn f(1)
12

13 finally shared == 2

Figure 4.3: [code/prog4enter.hny] Incorrect attempt at fixing the code of Figure 3.2(b)

Exercises

4.1 Figure 4.3 shows an attempt at trying to fix the code of Figure 3.2(b). Run it through Harmony
and see what happens. Based on the error output, describe in English what is wrong with the code
by describing, in broad steps, how running the program can get into a bad state.

4.2 What if we swapped Lines 5 and 6 of Figure 4.3? Run it through Harmony and describe either
why it works or why it does not work.

32

https://harmony.cs.cornell.edu/code/prog4enter.hny

Chapter 5

Critical Sections

Hopefully you have started thinking of how to solve the concurrency problem and you may already
have prototyped some solutions. In this chapter, we will go through a few reasonable but broken
attempts before arriving at a working solution. In the case of Figure 3.2, the problem is that we
would like make sure that, when the count variable is being updated, no other thread is trying to
do the same thing. The code that must be isolated is called a critical section (a.k.a. critical region)
[Dij62, Dij65b, Dij65a]: A region of code where only one thread is allowed to execute at a time and
that must be executed until completion. In the case of Figure 3.2, the critical section is Line 5.

Critical sections are useful when accessing a shared data structure, particularly when that
access requires multiple underlying machine instructions. A counter is a very simple example of a
data structure (it is a list of bits), but—as we have seen—incrementing a variable requires multiple
instructions. A more involved one would be accessing a binary tree. Adding a node to a binary tree,
or re-balancing a tree, often requires multiple operations. Maintaining “consistency” is certainly
much easier if during this time no other thread also tries to access the binary tree. Typically,
you want some property of the data structure to hold at the beginning and at the end of the
critical section, but in the middle the property may be temporarily invalid—this is not a problem
as critical sections guarantee that no other thread will be able to see the intermediate state of the

1 def thread():
2 while True:
3 # Critical section is here
4 pass
5

6 spawn thread()
7 spawn thread()

Figure 5.1: [code/csbarebones.hny] Modeling a critical section

33

https://harmony.cs.cornell.edu/code/csbarebones.hny

1 # number of threads in the critical section
2 in cs = 0
3 invariant in cs in { 0, 1 }
4

5 def thread():
6 while choose { False, True }:
7 # Enter critical section
8 atomically in cs += 1
9

10 # Critical section is here
11 pass
12

13 # Exit critical section
14 atomically in cs –= 1
15

16 spawn thread()
17 spawn thread()

Figure 5.2: [code/cs.hny] Harmony model of a critical section

data structure. An implementation of a data structure that can be safely accessed by multiple
threads and is free of race conditions is called thread-safe.

A critical section is often modeled as threads in an infinite loop entering and exiting the critical
section. Figure 5.1 shows the Harmony code. We need to ensure is that there can never be two
or more threads in the critical section. This property is called mutual exclusion. Mutual exclusion
by itself is easy to ensure. For example, we could insert the following code to enter the critical
section:

await False

This code will surely prevent two or more threads from executing in the critical section at the
same time. But it does so by preventing any thread from reaching the critical section. We clearly
need another property besides mutual exclusion.

Mutual exclusion is an example of a safety property, a property that ensures that nothing bad
will happen, in this case two threads being in the critical section. What we need now is a liveness
property : We want to ensure that eventually something good will happen. There are various possible
liveness properties we could use, but here we will propose the following informally: If (1) there exists
a non-empty set S of threads that are trying to enter the critical section and (2) threads in the
critical section always leave eventually, then eventually one thread in S will enter the critical section.
We call this progress.

In order to detect violations of progress, and other liveness problems in algorithms in general,
Harmony requires that every execution must be able to reach a state in which all threads have

34

https://harmony.cs.cornell.edu/code/cs.hny

terminated. Clearly, even if mutual exclusion holds in Figure 5.1, the spawned threads never
terminate.

We will instead model threads in critical sections using the framework in Figure 5.2: a thread
can choose to enter a critical section more than once, but it can also choose to terminate, even
without entering the critical section ever. (Recall that Harmony will try every possible execution,
and so it will evaluate both choices.) As it turns out, there is an advantage to doing it this way:
We also test if a thread can enter when there is no other thread trying to enter the critical section.
As we will see below, this is not always obvious.

This code specifies that at most one thread can be executing in the critical section by using a
counter in cs that a thread atomically increments when entering the critical section and atomically
decrements when it leaves. The code specifies the invariant that in cs must be either 0 or 1. You
can think of this as the type of in cs.

We will now consider various approaches toward implementing this specification.

You may already have heard of the concept of a lock and have realized that it could be used to
implement a critical section. The idea is that the lock is like a baton that at most one thread can
own (or hold) at a time. A thread that wants to enter the critical section at a time must obtain
the lock first and release it upon exiting the critical section.

Using a lock is a good thought, but how does one implement one? Figure 5.3 presents an
attempt at mutual exclusion based on a näıve (and, as it turns out, incorrect) implementation of
a lock. Initially the lock is not owned, indicated by lockTaken being False. To enter the critical
section, a thread waits until lockTaken is False and then sets it to True to indicate that the lock
has been taken. The thread then executes the critical section. Finally, the thread releases the lock
by setting lockTaken back to False.

Unfortunately, if we run the program through Harmony, we find that the assertion fails. Fig-
ure 5.3 also shows the Harmony output. thread(1) finds that the lock is available, but just before
storing True in lockTaken, thread(0) gets to run. Because lockTaken is still False, thread(0) also
believes it can acquire the lock, stores True in lockTaken, and moves on to the critical section.
Finally, thread(1) moves on, also storing True into lockTaken and also moving into the critical
section. The lockTaken variable suffers from the same sort of race condition as the count variable
in Figure 3.2: testing and setting the lock consists of several instructions. It is thus possible for
both threads to believe the lock is available and to obtain the lock at the same time.

Preventing multiple threads from updating the same variable, Figure 5.4 presents a solution
based on each thread having a flag indicating that the thread is trying to enter the critical section.
A thread can write its own flag and read the flag of its peer. After setting its flag, the thread waits
until the other thread (1− self) is not trying to enter the critical section. If we run this program,
the assertion does not fail. In fact, this solution does prevent both threads being in the critical
section at the same time.

To see why, first note the following invariant: If thread i is in the critical section, then
flags[i] = True. Without loss of generality, suppose that thread 0 sets flags[0] at time t0. Thread 0
can only reach the critical section if at some time t1, t1 > t0, the thread finds that flags[1] = False.
Because of the invariant, flags[1] = False implies that thread 1 is not in the critical section at
time t1. Let t2 be the time at which thread 0 sets flags[0] to False. Thread 0 is in the critical
section sometime between t1 and t2. It is easy to see that thread 1 cannot enter the critical section
between t1 and t2, because flags[1] = False at time t1. To reach the critical section between t1 and

35

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 lockTaken = False
5

6 def thread(self):
7 while choose({ False, True }):
8 # Enter critical section
9 await not lockTaken

10 lockTaken = True
11

12 atomically in cs += 1
13 # Critical section
14 atomically in cs –= 1
15

16 # Leave critical section
17 lockTaken = False
18

19 spawn thread(0)
20 spawn thread(1)

Summary: something went wrong in an execution
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()
– Line 1: Initialize in cs to 0
– Line 4: Initialize lockTaken to False
– Thread terminated

� Schedule thread T3: thread(1)
– Line 7: Choose True
– Preempted in thread(1) about to store True into lockTaken in line 10

� Schedule thread T2: thread(0)
– Line 7: Choose True
– Line 10: Set lockTaken to True (was False)
– Line 12: Set in cs to 1 (was 0)
– Preempted in thread(0) about to execute atomic section in line 14

� Schedule thread T3: thread(1)
– Line 10: Set lockTaken to True (unchanged)
– Line 12: Set in cs to 2 (was 1)
– Preempted in thread(1) about to execute atomic section in line 14

� Schedule thread T1: invariant()
– Line 2: Harmony assertion failed

Figure 5.3: [code/naiveLock.hny] Näıve implementation of a shared lock and the markdown
output of running Harmony

36

https://harmony.cs.cornell.edu/code/naiveLock.hny

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 flags = [False, False]
5

6 def thread(self):
7 while choose({ False, True }):
8 # Enter critical section
9 flags[self] = True

10 await not flags[1 – self]
11

12 atomically in cs += 1
13 # Critical section
14 atomically in cs –= 1
15

16 # Leave critical section
17 flags[self] = False
18

19 spawn thread(0)
20 spawn thread(1)

Summary: some execution cannot terminate
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()
– Line 1: Initialize in cs to 0
– Line 4: Initialize flags to [False, False]
– Thread terminated

� Schedule thread T1: thread(0)
– Line 7: Choose True
– Line 9: Set flags[0] to True (was False)
– Preempted in thread(0) about to load variable flags[1] in line 10

� Schedule thread T2: thread(1)
– Line 7: Choose True
– Line 9: Set flags[1] to True (was False)
– Preempted in thread(1) about to load variable flags[0] in line 10

Final state (all threads have terminated or are blocked):
� Threads:

– T1: (blocked) thread(0)
* about to load variable flags[1] in line 10

– T2: (blocked) thread(1)
* about to load variable flags[0] in line 10

Figure 5.4: [code/naiveFlags.hny] Näıve use of flags to solve mutual exclusion

37

https://harmony.cs.cornell.edu/code/naiveFlags.hny

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 turn = 0
5

6 def thread(self):
7 while choose({ False, True }):
8 # Enter critical section
9 turn = 1 – self

10 await turn == self
11

12 atomically in cs += 1
13 # Critical section
14 atomically in cs –= 1
15

16 # Leave critical section
17

18 spawn thread(0)
19 spawn thread(1)

Summary: some execution cannot terminate
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()
– Line 1: Initialize in cs to 0
– Line 4: Initialize turn to 0
– Thread terminated

� Schedule thread T2: thread(1)
– Line 7: Choose False
– Thread terminated

� Schedule thread T1: thread(0)
– Line 7: Choose True
– Line 9: Set turn to 1 (was 0)
– Preempted in thread(0) about to load variable turn in line 10

Final state (all threads have terminated or are blocked):
� Threads:

– T1: (blocked) thread(0)
* about to load variable turn in line 10

– T2: (terminated) thread(1)

Figure 5.5: [code/naiveTurn.hny] Näıve use of turn variable to solve mutual exclusion

38

https://harmony.cs.cornell.edu/code/naiveTurn.hny

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 sequential flags, turn
5 flags = [False, False]
6 turn = choose({0, 1})
7

8 def thread(self):
9 while choose({ False, True }):

10 # Enter critical section
11 flags[self] = True
12 turn = 1 – self
13 await (not flags[1 – self]) or (turn == self)
14

15 atomically in cs += 1
16 # Critical section
17 atomically in cs –= 1
18

19 # Leave critical section
20 flags[self] = False
21

22 spawn thread(0)
23 spawn thread(1)

Figure 5.6: [code/Peterson.hny] Peterson’s Algorithm

t2, thread 1 would first have to set flags[1] to True and then wait until flags[0] = False. But that
does not happen until time t2.

However, if you run the program through Harmony, it turns out the solution does have a problem:
If both try to enter the critical section at the same time, they may end up waiting for one another
indefinitely. (This is a form of deadlock, which will be discussed in Chapter 15.) Thus the solution
violates progress.

The final näıve solution that we propose is based on a variable called turn. Each thread politely
lets the other thread have a turn first. When turn = i, thread i can enter the critical section, while
thread 1− i has to wait. An invariant of this solution is that while thread i is in the critical section,
turn = i. Since turn cannot be 0 and 1 at the same time, mutual exclusion is satisfied. The solution
also has the nice property that the thread that has been waiting the longest to enter the critical
section can go next.

Run the program through Harmony. It turns out that this solution also violates progress, albeit
for a different reason: If thread i terminates instead of entering the critical section, thread 1 − i,
politely, ends up waiting indefinitely for its turn. Too bad, because it would have been a great
solution if both threads try to enter the critical section ad infinitum.

39

https://harmony.cs.cornell.edu/code/Peterson.hny

You may now start to think that a solution to the mutual exclusion problem without special
hardware support is impossible. However, in 1981, Gary L. Peterson came up with a beautiful
solution, now known as “Peterson’s Algorithm” [Pet81]. The algorithm is an amalgam of the
(incorrect) algorithms in Figure 5.4 and Figure 5.5, and is presented in Figure 5.6. (The first line
specifies that the flags and turn variables are assumed to satisfy sequential consistency—it prevents
Harmony from complaining about data races involving these variables, explained in Chapter 8.)

A thread first indicates its interest in entering the critical section by setting its flag. The thread
then politely gives way to the other thread should it also want to enter the critical section—if both
do so at the same time one will win because writes to memory in Harmony are atomic. The thread
continues to be polite, waiting until either the other thread is nowhere near the critical section
(flag [1 – self] = False) or has given way (turn = self).

Running the algorithm with Harmony shows that it satisfies both mutual exclusion and progress.
Why does it work? To answer that we need to prove the correctness of Peterson’s algorithm.
Unfortunately, proving the correctness of Peterson’s algorithm is not trivial. You can find an
informal proof in Appendix H.

Peterson’s algorithm implements a critical section, but it is not efficient, especially if generalized
to more than two threads. Worse, Peterson relies on load and store operations to be executed
atomically, but this may not be the case. There are a variety of possible reasons for this.

� Variables may have more bits than the processor’s data bus. For example, variables may have
32 bits, but the data bus may only have 16 bits. Thus to store or load a variable takes two 16-
bit operations each. Take, for example, a variable that has value 0xFFFFFFFF, and consider
a concurrent load and store operation on the variable. The store operation wants to clear the
variable, but because it takes two store operations on the bus, the load operation may return
either 0xFFFF0000 or 0x0000FFFF, a value that the variable never was supposed to have.
This is the case even if the processor supports a 32-bit load or store machine instruction: On
the data bus it still requirers two operations. And even with a 32-bit data bus, the problem
could arise if the variable is not aligned on a 4-byte word boundary.

� Modern processors sometimes re-orders load and store operations (out-of-order execution) for
improved performance. On a sequential processor, the re-ordering is not a problem as the
processor only re-orders operations on independent memory locations. However, as Exer-
cise 5.4 shows, Peterson’s algorithm breaks down if such seemingly independent operations
are re-ordered. Some memory caches can also cause non-atomic behavior of memory when
shared among multiple cores.

� Even compilers, in their code generation, may make optimizations that can reorder operations,
or even eliminate operations, on variables. For example, a compiler may decide that it is
unnecessary to read the same variable more than once, because how could it possibly change
if there are no store operations in between?

Peterson’s algorithm relies on a sequential consistent memory model and hence the sequential
statement: Without it Harmony will complain about data races. More precisely, the sequential
statement says that the program relies on memory load and store instructions operating on the
indicated variables to be performed atomically (so concurrently invoked instructions are sequen-
tialized), and that this order should be consistent with the order of instructions invoked on each
thread. The default memory models of C and Java are not sequentially consistent. The volatile

40

keyword in Java has a similar function as Harmony’s sequential keyword. Like many constructions
in Java, its volatile keyword was borrowed from C and C++. However, in C and C++, they do
not provide sequential consistency, and one cannot implement Peterson’s algorithm in C or C++
directly.

Exercises

5.1 Run Figure 5.2 using Harmony. As there is no protection of the critical section, mutual
exclusion is violated, the assertion should fail, and a trace should be reported. Now insert

await False

just before entering the critical section in Figure 5.2 and run Harmony again. Mutual exclusion
is guaranteed but progress is violated. Harmony should print a trace to a state from which a
terminating state cannot be reached. Describe in English the difference in the failure reports before
and after inserting the code.

5.2 See if you can come up with some different approaches that satisfy both mutual exclusion and
progress. Try them with Harmony and see if they work or not. If they don’t, try to understand
why.

5.3 Figure 5.7 presents another solution to the mutual exclusion problem. The solution is similar
to the one in Figure 5.4, but has a thread back out and try again if it finds that the other thread is
either trying to enter the critical section or already has. Compare this algorithm with Peterson’s.
Why does Harmony complain about active busy waiting? Does the algorithm guarantee that at
least one thread can enter the critical section?

5.4 Consider if the first two assignments in Peterson’s algorithm (setting flags[self] to True and
turn to 1 – self can be reversed. After all, they are different variables assigned independent
values—in a sequential program one could surely swap the two assignments. Then run the program
in Figure 5.6 after reversing the two assignments and describe in English what happens.

5.5 Bonus question: Can you generalize Peterson’s algorithm to more than two threads?

5.6 Bonus question: Implement Dekker’s Algorithm, Dijkstra’s Algorthm [Dij65b], Eisenstein and
McGuire’s Algorithm, Szymański’s Algorithm, or Lamport’s Bakery Algorithm. Note that the last
one uses unbounded state, so you should modify the threads so they only try to enter the critical
section a bounded number of times.

41

https://en.wikipedia.org/wiki/Dekker's_algorithm
https://en.wikipedia.org/wiki/Eisenberg_&_McGuire_algorithm
https://en.wikipedia.org/wiki/Eisenberg_&_McGuire_algorithm
https://en.wikipedia.org/wiki/Szymanski's_algorithm
https://en.wikipedia.org/wiki/Lamport's_bakery_algorithm

1 in cs = 0
2 invariant in cs in { 0, 1 }
3

4 sequential flags
5 flags = [False, False]
6

7 def thread(self):
8 while choose({ False, True }):
9 # Enter critical section

10 flags[self] = True
11 while flags[1 – self]:
12 flags[self] = False
13 flags[self] = True
14

15 atomically in cs += 1
16 # Critical section
17 atomically in cs –= 1
18

19 # Leave critical section
20 flags[self] = False
21

22 spawn thread(0)
23 spawn thread(1)

Figure 5.7: [code/csonebit.hny] Mutual exclusion using a flag per thread

42

https://harmony.cs.cornell.edu/code/csonebit.hny

Chapter 6

Harmony Methods and Pointers

A method m with argument a is invoked in its most basic form as follows (assigning the result to
r).

r = m a

That’s right, no parentheses are required. In fact, if you invoke m(a), the argument is (a), which
is the same as a. If you invoke m(), the argument is (), which is the empty tuple. If you invoke
m(a, b), the argument is (a, b), the tuple consisting of values a and b.

You may note that all this looks familiar. Indeed, the syntax is the same as that for dictionaries
and lists (see Chapter 4). Dictionaries, lists, and methods all map Harmony values to Harmony
values, and their syntax is indistinguishable. If f is a method, list, or dictionary, and x is some
Harmony value, then f x, f(x), and f[x] are all the same expression in Harmony.

Harmony does not have a return statement. Using the returns clause of def, a result variable
can be declared, for example: def f() returns something. The result of the method should be
assigned to variable something. Harmony also does not support break or continue statements in
loops. One reason for their absence is that, particularly in concurrent programming, such control
flow directions are highly error-prone. It is too easy to forget to, say, release a lock when returning
a value in the middle of a method—a major source of bugs in practice.

Harmony is not an object-oriented language like Python is. In Python, you can pass an object
reference to a method, and that method can then update the object. In Harmony, it is also
sometimes convenient to have a method update a shared variable specified as an argument. For
this, as mentioned in Chapter 4, each shared variable has an address, itself a Harmony value. If x
is a shared variable, then the expression ?x is the address of x. If a variable contains an address, we
call that variable a pointer. If p is a pointer to a shared variable, then the expression !p evaluates
to the value of the shared variable. In particular, !?x = x. This is similar to how C pointers work
(∗&x = x).

Often, pointers point to dictionaries, and so if p is such a pointer, then (!p).field would evaluate
to the specified field in the dictionary. Note that the parentheses in this expression are needed,
as !p.field would wrongly evaluate !(p.field). (!p).field is such a common expression that, like C,
Harmony supports the shorthand p→field (written p->field), which greatly improves readability.
However, if p points to a list, you have to write (!p)[i] to index into the list. (Unlike C, Harmony
does not support pointer arithmetic.)

43

1 def Peterson enter(pm, pid):
2 pm→flags[pid] = True
3 pm→turn = 1 – pid
4 await (not pm→flags[1 – pid]) or (pm→turn == pid)
5

6 def Peterson exit(pm, pid):
7 pm→flags[pid] = False
8

9 def Peterson mutex() returns result :
10 result = { .turn: choose({0, 1}), .flags: [False, False] }
11

12 #### The code above can go into its own Harmony module ####
13

14 in cs = 0
15 invariant in cs in { 0, 1 }
16

17 sequential mutex
18 mutex = Peterson mutex()
19

20 def thread(self):
21 while choose({ False, True }):
22 Peterson enter(?mutex, self)
23

24 atomically in cs += 1
25 # Critical section
26 atomically in cs –= 1
27

28 Peterson exit(?mutex, self)
29

30 spawn thread(0)
31 spawn thread(1)

Figure 6.1: [code/PetersonMethod.hny] Peterson’s Algorithm accessed through methods

44

https://harmony.cs.cornell.edu/code/PetersonMethod.hny

1 current = [[1, 2, 3], [], []]
2

3 while current [2] != [1, 2, 3]:
4 let moves = { (s, d) for s in {0..2} for d in {0..2}
5 where current [s] != []
6 where (current [d] == []) or (current [s][0] < current [d][0]) }
7 let (src,dst) = choose moves:
8 print str(src) + " −> " + str(dst)
9 current [dst] = [current [src][0],] + current [dst]

10 del current [src][0]

Figure 6.2: [code/hanoi.hny] Nondeterministic Towers of Hanoi

1 def towers(n, src, dst, other):
2 if n > 0:
3 towers(n – 1, src, other, dst)
4 print str(src) + " −> " + str(dst)
5 towers(n – 1, other, dst, src)
6

7 towers(3, 1, 2, 3)

Figure 6.3: [code/hanoi2.hny] Recursive Towers of Hanoi

Figure 6.1 again shows Peterson’s algorithm, but this time with methods defined to enter and
exit the critical section. The name mutex is often used to denote a variable or value that is used
for mutual exclusion. Peterson mutex is a method that returns a “mutex,” which, in this case, is a
dictionary that contains Peterson’s Algorithm’s shared memory state: a turn variable and two flags.
Both methods Peterson enter and Peterson exit take two arguments: a pointer to a mutex and
the thread identifier (0 or 1). pm→turn is the value of the .turn key in the dictionary that pm
points to.

You can put the first three methods in its own Harmony source file and include the file using
the Harmony import statement. This would make the code usable by multiple applications.

Finally, methods can have local variables.
Method variables are either mutable (writable) or immutable (read-only). The arguments to

a method and the bound variable (or variables) within a for statement are immutable; the result
variable is mutable. Using the var statement, new mutable local variables can be declared. For
example, var x = 3 declares a new mutable local variable x. The let statement allows declaring
new immutable local variables. For example: let x = 3: y += x adds 3 to variable y.

As an example of using let, Figure 6.2 solves the Towers of Hanoi problem. If you are not
familiar with this problem: There are three towers with disks of varying sizes. In the initial
configuration, the first tower has three disks (of sizes 1, 2, and 3), with the largest disk at the

45

https://harmony.cs.cornell.edu/code/hanoi.hny
https://harmony.cs.cornell.edu/code/hanoi2.hny

1 const FIFO = False
2

3 def CLOCK(n) returns result :
4 result = { .entries: [None,] * n, .recent : {}, .hand : 0, .misses: 0 }
5

6 def ref(clock, x):
7 if x not in clock→entries:
8 while clock→entries[clock→hand] in clock→recent :
9 clock→recent –= {clock→entries[clock→hand]}

10 clock→hand = (clock→hand + 1) % len(clock→entries)
11 clock→entries[clock→hand] = x
12 clock→hand = (clock→hand + 1) % len(clock→entries)
13 clock→misses += 1
14 if not FIFO:
15 clock→recent |= {x}
16

17 clock3, clock4, refs = CLOCK(3), CLOCK(4), []
18

19 const VALUES = { 1..5 }
20

21 var last = {}
22 for i in {1..100}:
23 let x = i if i < 5 else choose(VALUES – last):
24 refs = refs + [x,]
25 ref(?clock3, x); ref(?clock4, x)
26 assert(clock4.misses <= clock3.misses)
27 last = {x}

Figure 6.4: [code/clock.hny] Harmony program that finds page replacement anomalies

bottom, while the other two towers are empty. You are allowed to move a top disk from one tower
to another, but you are not allowed to stack a larger disk on a smaller one. The objective is to move
the disks from the first tower to the third one. The program tries valid moves non-determistically
until it finds a solution. Since Harmony tries all possible executions, the output of this program
shows all possible solutions to the problem.

The program also contains an example of set comprehension (Lines 4 to 6). This is similar to set
comprehension in Python, except that Harmony uses the keyword where instead of if (simplifying
parsing).

Figure 6.3 shows the well-known recursive solution for Towers of Hanoi. It is deterministic and
therefore outputs only a single solution.

If you are ready to learn about how locks are implemented in practice, you can now skip the
rest of this chapter. But if you would like to see a cool example of using the concepts introduced in
this chapter, hang on for a sequential Harmony program that finds anomalies in page replacement

46

https://harmony.cs.cornell.edu/code/clock.hny

algorithms. In 1969, Bélády et al. published a paper [BNS69] that showed that making a cache
larger does not necessarily lead to a higher hit ratio. He showed this for a scenario using a FIFO
replacement policy when the cache is full. The program in Figure 6.4 will find exactly the same
scenario if you define FIFO to be True. Moreover, if you define FIFO to be False, Harmony will
find a scenario for the CLOCK replacement policy [Cor69].

In this program, CLOCK maintains the state of a cache (in practice, typically pages in memory).
The set recent maintains whether an access to the cache for a particular reference was recent or not.
(The set is not used if FIFO is True.) The integer misses maintains the number of cache misses.
Method ref(ck, x) is invoked when x is referenced and checked against the cache ck.

The program declares two caches: one with 3 entries (clock3) and one with 4 entries (clock4).
The interesting part is in the last block of code. It runs every sequence of references of up to
100 entries, using references in the range 1 through 5. Note that all the constants chosen in this
program (3, 4, 5, 100) are the result of some experimentation—you can try other ones. To reduce
the search space, the first four references are pinned to 1, 2, 3, and 4. Further reducing the search
space, the program never repeats the same reference twice in a row (using the local variable last).

The two things to note here is the use of the choose expression and the assert statement.
Using choose, we are able to express searching through all possible strings of references without a
complicated nested iteration. Using assert, we are able to express the anomaly we are looking for.

In case you want to check if you get the right results. For FIFO, the program finds the same
anomaly that Bélády et al. found: 1 2 3 4 1 2 5 1 2 3 4 5. For the CLOCK algorithm the program
actually finds a shorter reference string: 1 2 3 4 2 1 2 5 1 2.

Exercises

6.1 (This is just for fun or exercise as it is not a concurrent programming problem.) Implement a
Harmony program that finds solutions to the “cabbage, goat, and wolf” problem. In this problem,
a person accompanied by these three items has to cross a stream in a small boat, but can only take
one item at a time. So, the person has to cross back and forth several times, leaving two items on
one or the other shore by themselves. Unfortunately, if left to themselves, the goat would eat the
cabbage and the wolf would eat the goat. What crossings does the person need to make in order
not to lose any items?

47

Chapter 7

Specifying a Lock

So far, we have used Harmony to implement various algorithms. But Harmony can also be used
to specify what an algorithm is supposed to do. For example, Figure 7.1 specifies the intended
behavior of a lock. In this case, a lock is a boolean, initially False, with two operations, acquire()
and release(). The acquire() operation waits until the lock is False and then sets it to True
in an atomic operation. The release() operation sets the lock back to False. The code is similar
to Figure 5.3, except that waiting for the lock to become available and taking it is executed as an
atomic operation.

The code in Figure 7.1 is also in Harmony’s synch module. Figure 7.2 shows how locks may be
used to implement a critical section. Figure 7.3 gives an example of how locks may be used to fix
the program of Figure 3.2(b).

Note that the code of Figure 7.1 is executable in Harmony. However, the atomically keyword
is not available in general programming languages and should not be used for implementation.
Peterson’s algorithm is an implementation of a lock, although only for two processes. In the following
chapters, we will look at more general ways of implementing locks using atomic constructions that
are usually available in the underlying hardware.

In Harmony, any statement can be preceded by the atomically keyword. It means that the
statement as a whole is to be executed atomically. (Harmony can accomplish this by controlling
how threads are scheduled.) The atomically keyword can be used to specify the behavior of
methods such as acquire and release. But an actual executable program should not use the
atomically keyword because—on a normal machine—it cannot be directly compiled into machine
code. If we want to make the program executable on hardware, we have to show how Lock,
acquire, and release are implemented, not just how they are specified. Chapter 8 presents such
implementations.

The code in Figure 7.1 also uses the Harmony when statement. A when statement waits until
a time in which condition holds (not necessarily the first time) and then executes the statement
block. The “await condition” statement is the same as “when condition: pass”. Combined with
the atomically keyword, the entire statement is executed atomically at a time that the condition
holds.

It is important to appreciate the difference between an atomic section (the statements executed
within an atomic block of statements) and a critical section (protected by a lock of some sort). The
former ensures that while the statements in the block are executing no other thread can execute.

48

1 def Lock() returns result :
2 result = False
3

4 def acquire(lk):
5 atomically when not !lk :
6 !lk = True
7

8 def release(lk):
9 assert !lk

10 atomically !lk = False

Figure 7.1: [code/lock.hny] Specification of a lock

1 from synch import Lock, acquire, release
2

3 const NTHREADS = 5
4

5 thelock = Lock()
6

7 def thread():
8 acquire(?thelock)
9 pass # critical section is here

10 release(?thelock)
11

12 for i in {1..NTHREADS}:
13 spawn thread()

Figure 7.2: [code/lock demo.hny] Using a lock to implement a critical section

49

https://harmony.cs.cornell.edu/code/lock.hny
https://harmony.cs.cornell.edu/code/lock_demo.hny

1 from synch import Lock, acquire, release
2

3 shared = 0
4 thelock = Lock()
5

6 def f():
7 acquire(?thelock)
8 shared += 1
9 release(?thelock)

10

11 spawn f()
12 spawn f()
13

14 finally shared == 2

Figure 7.3: [code/prog4lock.hny] Figure 3.2(b) fixed with a lock

The latter allows multiple threads to run concurrently, just not within the critical section. The
former is rarely available to a programmer (e.g., none of Python, C, or Java support it), while the
latter is very common.

Atomic statements are not intended to replace locks or other synchonization primitives. When
implementing synchronization solutions you should not directly use atomic statements but use the
synchronization primitives that are available to you. But if you want to specify a synchronization
primitive, then use atomically by all means. You can also use atomic statements in your test code.
In fact, assert statements are executed atomically and specify that some condition must hold in
every execution of the program. Note two important differences with other programming languages:
In most programming languages, an assert statement only checks the current execution, and the
condition is not evaluated atomically.

50

https://harmony.cs.cornell.edu/code/prog4lock.hny

Chapter 8

Lock Implementations

Locks are the most prevalent and basic form of synchronization in concurrent programs. Typ-
ically, whenever you have a shared data structure, you want to protect the data structure with a
lock and acquire the lock before access and release it immediately afterward. In other words, you
want the access to the data structure to be a critical section. That way, when a thread makes mod-
ifications to the data structure that take multiple steps, other threads will not see the intermediate
inconsistent states of the data structure. (An inconsistent state of a data structure is either an
invalid state or a state that does not reflect a possible value in the execution.)

When there is a bug in a program because some code omitted obtaining a lock before accessing
a shared data structure, that is known as a data race. More precisely, a data race happens when
there is a state in which multiple threads are trying to access the same variable, at least one
of those accesses updates the variable, and at least one of those accesses is non-atomic. In many
environments, including C and Java programs, the behavior of concurrent load and store operations
have tricky or even undefined semantics. One should therefore avoid data races, which is why
Harmony reports them even though Harmony has sequentially consistent memory.

Because atomic operations cannot overlap, data races can be avoided by making operations
atomic. In Harmony, this can be done in two ways. First, using the sequential statement, you can
specify that concurrent load and store operations to the specified variables are considered atomic.
Second, you can make accesses atomic using the atomically keyword. However, these are Harmony
specification constructs. In a practical implementation, a programmer will often use one or more
locks to prevent overlapping access to shared variables.

To implement locks, multi-core processors provide so-called atomic instructions: special ma-
chine instructions that can read memory and then write it in an indivisible step.

While the HVM does not have any specific built-in atomic instructions besides loading and
storing variables, it does have support for executing multiple instructions atomically. We can use
the atomically keyword to specify a wide variety of atomic operations. For example, we could fix
the program in Figure 3.2 by constructing an atomic increment operation for a counter, like so:

51

1 const N = 5
2

3 in cs = 0
4 invariant in cs in { 0, 1 }
5

6 shared = False
7 private = [True,] * N

8 invariant [x for x in [shared,] + private where not x] == [False,]
9

10 def swap(s, p):
11 atomically !p, !s = !s, !p
12

13 def thread(self):
14 while choose({ False, True }):
15 # Enter critical section
16 while private[self]:
17 swap(?shared, ?private[self])
18

19 atomically in cs += 1
20 assert not private[self]
21 atomically in cs –= 1
22

23 # Leave critical section
24 swap(?shared, ?private[self])
25

26 for i in {0..N–1}:
27 spawn thread(i)

Figure 8.1: [code/spinlock.hny] Mutual Exclusion using a “spinlock” based on atomic swap

52

https://harmony.cs.cornell.edu/code/spinlock.hny

1 def atomic inc(ptr):
2 atomically !ptr += 1
3

4 count = 0
5 atomic inc(?count)

To support implementing locks, some CPUs have an atomic “swap” operation. Method swap

in Figure 8.1 shows its specification. Here s points to a shared boolean variable (the lock) and p
to a private boolean variable, belonging to some thread. The operation exchanges the value of the
shared variable and the private variable.

Figure 8.1 goes on to implement mutual exclusion for a set of N threads. The approach is called
spinlock, because each thread is “spinning” (executing a tight loop) until it can acquire the lock.
The program uses N + 1 boolean variables. Variable shared (the lock) is initialized to False while
private[i] for each thread i is initialized to True.

An important invariant, I1, of the program is that at any time exactly one of these variables is
False (expressed in Harmony in Line 8). Another invariant, I2(i), is that if thread i is in the critical
section, then private[i] = False (expressed in Line 20). Between the two (i.e., I1 ∧ ∀i : I2(i)), it is
clear that only one thread can be in the critical section at the same time.

To see that invariant I1 is maintained, we can use induction. Note that !p = True upon entry
of swap (because of the condition on the while loop that the swap method is invoked in). There
are two cases:

1. !s is False upon entry to swap. Then upon exit !p = False and !s = True, maintaining the
invariant.

2. !s is True upon entry to swap. Then upon exit nothing has changed, maintaining the invariant.

Invariant I1 is also easy to verify for exiting the critical section because we can assume, by the
induction hypothesis, that private[i] is True just before exiting the critical section. Invariant I2(i)
is obvious as (i) thread i only proceeds to the critical section if private(i] is False, and (ii) no other
thread modifies private(i].

Harmony can check these invariants. I1(i) is specified in Line 8, while I2(i) is expressed in Line
20 using an assert statement in the critical section. The expression in Line 8 counts the number of
False values in the list consisting of the shared variable and the private variables and checks that
the result is 1.

The lock implementation in Figure 8.1 uses a shared variable and a private variable for each
thread. The private variables themselves are actually implemented as shared variables, but they
are accessed only by their respective threads. A thread usually does not need to keep explicit track
of whether it has a lock or not, because it is implied by the control flow of the program—a thread
implicitly knows that when it is executing in a critical section it has the lock. There is no need to
keep private as a shared variable—we only did so to be able to show and check the invariants. But
in practice this is very expensive: An atomic swap operation requires two memory loads and two
memory stores.

A more common solution to implementing a lock uses an atomic test-and-set instruction provided
by most CPUs. Figure 8.2 shows the specification of test and set and the implementation of a
spinlock based on it. Method test and set involves only a single variable: The method sets the

53

1 def test and set(s) returns oldvalue:
2 atomically:
3 oldvalue = !s
4 !s = True
5

6 def atomic store(p, v):
7 atomically !p = v
8

9 def Lock() returns initvalue:
10 initvalue = False
11

12 def acquire(lk):
13 while test and set(lk):
14 pass
15

16 def release(lk):
17 atomic store(lk, False)

Figure 8.2: [code/lock tas.hny] Implementation of the lock specification in Figure 7.1 using a
spinlock based on test-and-set

variable to True and returns the old value of the variable. The variable represents the lock: If free,
the value is False; if taken, the value is True. Method Lock() returns the initial value of a lock,
which is False. Method acquire(lk) invokes test and set(lk) until it returns False, meaning that
the lock variable pointed to by lk was available (but now taken). Method release(lk) releases the
lock by setting !lk back to False. The lock is cleared in an atomic statement to prevent a data
race. (CPUs typically provide an atomic store operation.)

Besides this solution being more efficient than Figure 8.1, the solution is general for any number
of threads.

You can test the spinlock with the program in Figure 8.4 using the command harmony -m

synch=lock tas code/lock test1.hny. The -m flag tells Harmony to use the lock tas.hny file
for the synch module rather than the standard synch module (which contains only a specification
of the lock methods). The test program has a collection of threads repeatedly enter a critical section
and testing that there is at most one thread in the critical section at any time.

The spinlock implementation suffers potentially from starvation: An unlucky thread may never
be able to get the lock while other threads successfully acquire the lock one after another. It could
even happen with just two threads: One thread might successfully acquire the lock repeatedly in a
loop, while another thread is never lucky enough to acquire the lock in between.

A ticket lock (Figure 8.3 is an implementation of a lock that prevents starvation using an atomic
fetch-and-increment operator. It is inspired by European bakeries. A European bakery often has a
clearly displayed counter (usually just two digits) and a ticket dispenser. Tickets are numbered 0
through 99 and repeat over and over again (in the case of a two digit counter). When a customer
walks into the bakery, they draw a number from the dispenser and wait until their number comes

54

https://harmony.cs.cornell.edu/code/lock_tas.hny

1 const MAX THREADS = 8
2

3 def fetch and increment(p) returns oldvalue:
4 atomically:
5 oldvalue = !p
6 !p = (!p + 1) % MAX THREADS

7

8 def atomic load(p) returns value:
9 atomically value = !p

10

11 def Lock():
12 result = { .counter : 0, .dispenser : 0 }
13

14 def acquire(lk):
15 let my ticket = fetch and increment(?lk→dispenser):
16 while atomic load(?lk→counter) != my ticket :
17 pass
18

19 def release(lk):
20 fetch and increment(?lk→counter)

Figure 8.3: [code/lock ticket.hny] Implementation of the lock specification in Figure 7.1 using a
ticket lock

55

https://harmony.cs.cornell.edu/code/lock_ticket.hny

1 import lock

2

3 const N = 5
4

5 in cs = 0
6 invariant in cs in { 0, 1 }
7

8 thelock = lock.Lock()
9

10 def thread():
11 while choose({ False, True }):
12 lock.acquire(?thelock)
13

14 atomically in cs += 1
15 # Critical section
16 atomically in cs –= 1
17

18 lock.release(?thelock)
19

20 for i in {1..N}:
21 spawn thread()

Figure 8.4: [code/lock test1.hny] A test program for locks (based on Figure 5.2)

56

https://harmony.cs.cornell.edu/code/lock_test1.hny

1 def Lock() returns result :
2 result = { .acquired : False, .suspended : [] }
3

4 def acquire(lk):
5 atomically:
6 if lk→acquired :
7 stop ?lk→suspended [len lk→suspended]
8 assert lk→acquired
9 else:

10 lk→acquired = True
11

12 def release(lk):
13 atomically:
14 assert lk→acquired
15 if lk→suspended == []:
16 lk→acquired = False
17 else:
18 go (lk→suspended [0]) ()
19 del lk→suspended [0]

Figure 8.5: [modules/lock susp.hny] Lock implementation using suspension

up. Every time a customer has been helped, the counter is incremented. (Note that this only works
if there can be no more than 100 customers in the bakery at a time.)

Figure 8.3 uses two variables for a ticket lock, counter and dispenser. When a thread tries
to acquire the lock, it first fetches the current value of the dispenser variable (i.e., the ticket) and
increments the variable modulo MAX THREADS, all in one atomic operation. In practice, MAX THREADS

would be a number like 232 or 264, but since the Harmony model checker checks every possible state,
limiting MAX THREADS to a small number helps to keep the time and memory needed to model check
a Harmony program within reason. Moreover, it is easier to check that it fails when you run it with
more than MAX THREADS threads. After obtaining the ticket, the thread waits until its ticket value
equals the counter. Note that loading the counter must also be done atomically in order to avoid
a data race. The release the lock, it suffices to atomically increment the counter. You can test the
implementation using the command harmony -m synch=lock ticket code/lock test1.hny. To
see it fail, try harmony -c N=10 -m synch=lock ticket code/lock test1.hny.

We now turn to a radically different way of implementing locks, one that is commonly provided
by operating systems to user processes. We call a thread blocked if a thread cannot change the
state or terminate unless another thread changes the state first. A thread trying to acquire a lock
held by another thread is a good example of a thread being blocked. The only way forward is if
the other thread releases the lock.

In most operating systems, threads are virtual (as opposed to “raw CPU cores”) and can be
suspended until some condition changes. For example, threads are blocked while they wait for a

57

https://harmony.cs.cornell.edu/modules/lock_susp.hny

disk block they are trying to read or while they wait for a network message to arrive. Similarly, a
thread that is trying to acquire a lock can be suspended until the lock is available. In Harmony, a
thread can suspend itself and save its context (state) in a shared variable. Recall that the context
of a thread contains its program counter, stack, and register (containing the current method’s
variables). In Harmony, a context is a Harmony value and can be saved in a variable just like any
other value. The syntax of the expression that a thread executes to suspend itself is as follows:

stop s

Here s is a pointer to some variable. The expression causes the context of the thread to be
saved in !s and the thread to be no longer running. Another thread can revive the thread using the
go statement:

go !s r

Here r is any Harmony value. The statement causes a thread with the context contained in !s
to be added to the state that has just executed the stop s expression. The stop expression that
this thread last executed resumes by returning the value r.

Figure 8.5 shows the lock interface using suspension. It is implemented as follows:

� A lock maintains both a boolean indicating whether the lock is currently acquired and a list
of contexts of threads that want to acquire the lock.

� acquire() acquires the lock if available and suspends the invoking thread if not. In the latter
case, the context of the thread is added to the end of the list of contexts. Note that stop
is called within an atomic statement block—this is the only exception to such an atomic
statement block running to completion. While the thread is running no other threads can run
but, after the thread suspends itself, other threads can run.

� release() checks to see if any threads are waiting to acquire the lock. If so, it selects the first
context on the list and resumes it.

Selecting the first thread is a design choice. Another implementation could have picked the last
one, and yet another implementation could have used choose to pick an arbitrary one. Selecting
the first (FIFO) is a common choice in lock implementations as it is easy and prevents starvation.

You will find that using the implementation of a lock instead of the specification of a lock (in
the synch module) often leads to the model checker searching a significantly larger state space.
Thus it makes sense to model check larger programs in a modular fashion: Model check one module
implementation at a time, using specifications for the other modules.

Exercises

8.1 Run the program in Figure 7.3 using (i) synch and (ii) synchS. Report how many states were
explored by Harmony for each module.

8.2 Figure 8.6 shows a Harmony program with two variables x (initially 0) and y (initially 100)
that can be accessed through methods setX and getXY. An application invariant is that getXY

should return a pair that sums to 100. Add the necessary synchronization code.

58

1 x, y = 0, 100
2

3 def setX(a):
4 x = a
5 y = 100 – a
6

7 def getXY() returns xy :
8 xy = [x, y]
9

10 def checker():
11 let xy = getXY():
12 assert (xy [0] + xy [1]) == 100, xy
13

14 spawn checker()
15 spawn setX(50)

Figure 8.6: [code/xy.hny] Incomplete code for Exercise 8.2 with desired invariant x+ y = 100

8.3 Implement tryAcquire(b) as an additional interface for both the synch and synchS modules.
This interface is like acquire(b) but never blocks. It returns True if the lock was available (and
now acquired) or False if the lock was already acquired. Hint: You do not have to change the
existing code.

8.4 People who use an ATM often first check their balance and then withdraw a certain amount
of money not exceeding their balance. A negative balance is not allowed. Figure 8.7 shows two
operations on bank accounts: one to check the balance and one to withdraw money. Note that
all operations on accounts are carefully protected by a lock (i.e., there are no data races). The
customer method models going to a particular ATM and withdrawing money not exceeding the
balance. Running the code through Harmony reveals that there is a bug. It is a common type
of concurrency bug known as Time Of Check Time Of Execution (TOCTOE). In this case, by
the time the withdraw operation is performed, the balance can have changed. Fix the code in
Figure 8.7. Note, you should leave the customer code the same. You are only allowed to change
the atm methods, and you cannot use the atomically keyword.

59

https://harmony.cs.cornell.edu/code/xy.hny

1 from synch import Lock, acquire, release
2

3 const N ACCOUNTS = 2
4 const N CUSTOMERS = 2
5 const N ATMS = 2
6 const MAX BALANCE = 1
7

8 accounts = [{ .lock : Lock(), .balance: choose({0..MAX BALANCE})}
9 for i in {1..N ACCOUNTS}]

10

11 invariant min(accounts[acct].balance for acct in {0..N ACCOUNTS–1}) >= 0
12

13 def atm check balance(acct) returns balance: # return the balance on acct
14 acquire(?accounts[acct].lock)
15 balance = accounts[acct].balance
16 release(?accounts[acct].lock)
17

18 def atm withdraw(acct, amount) returns success: # withdraw amount from acct
19 assert amount >= 0
20 acquire(?accounts[acct].lock)
21 accounts[acct].balance –= amount
22 release(?accounts[acct].lock)
23 success = True
24

25 def customer(atm, acct, amount):
26 assert amount >= 0
27 let bal = atm check balance(acct):
28 if amount <= bal :
29 atm withdraw(acct, amount)
30

31 for i in {1..N ATMS}:
32 spawn customer(i, choose({0..N ACCOUNTS–1}),
33 choose({0..MAX BALANCE}))

Figure 8.7: [code/atm.hny] Withdrawing money from an ATM

60

https://harmony.cs.cornell.edu/code/atm.hny

Chapter 9

Concurrent Data Structures

The most common use for locks is in building concurrent data structures. By way of example, we will
first demonstrate how to build a concurrent queue. Concurrent queues turn out to be very important
in many concurrent and distributed programs, particularly in so-called producer/consumer scenarios
where one or more threads are producing items and one or more other threads consume them.

The queue module can be defined as follows:

� x = Queue(): initialize a new queue x ;

� put(?x, v): add v to the tail of x ;

� r = get(?x): returns r = None if x is empty or r = v if v was at the head of x.

Figure 9.1(a) shows a sequential specification for such a queue in Harmony. Sequential specifications
are useful to write down. They tend to be easy to understand as you only need to understand each
operation individually without having to worry about interactions between operations, because we
are assuming that operations are executed one at a time. Also, when writing down a specification,
you do not have to worry about efficiency. In this particular case, we capture the state of a queue
by a list. As a result, in the absence of concurrency, the sequential specification of the queue is also
a credible, if inefficient queue implementation.

Unfortunately, this sequential specification does not work well with threads concurrently ac-
cessing this queue. This is because operations can overlap in execution, and so one operation can
witness the intermediate state of another operation. As a compiler would be free to implement the
sequential specification in any way it wants to, it gets to decide what data structures to use to store
the list, and what machine instructions to use to implement the operations. For a sequential speci-
fication that is not a problem because we only need to understand the state in between operations,
but in a concurrent setting Figure 9.1(a) is underspecified; it does not say what happens when two
or more operations overlap.

Figure 9.1(b) shows the corresponding concurrent specification. It is almost identical to the
sequential specification, but it states that the actual execution of an operation of each method
has to happen atomically sometime between invoking the method and the method completing.
The specification cannot be used as an implementation for a queue, as processors generally do
not have atomic operations on lists, but it will work well as a specification. See Figure 9.2 for a
simple demonstration program that uses a concurrent queue; the specification can be used with any

61

1 def Queue() returns empty:
2 empty = []
3

4 def put(q, v):
5 !q += [v,]
6

7 def get(q) returns next :
8 if !q == []:
9 next = None

10 else:
11 next = (!q)[0]
12 del (!q)[0]

1 def Queue() returns empty:
2 empty = []
3

4 def put(q, v):
5 atomically !q += [v,]
6

7 def get(q) returns next :
8 atomically:
9 if !q == []:

10 next = None
11 else:
12 next = (!q)[0]
13 del (!q)[0]

(a) [code/queue nonatom.hny] Sequential (b) [code/queue.hny] Concurrent

Figure 9.1: A sequential and a concurrent specification of a queue

1 import queue

2

3 def sender(q, v):
4 queue.put(q, v)
5

6 def receiver(q):
7 let v = queue.get(q):
8 assert v in { None, 1, 2 }
9

10 demoq = queue.Queue()
11 spawn sender(?demoq, 1)
12 spawn sender(?demoq, 2)
13 spawn receiver(?demoq)
14 spawn receiver(?demoq)

Figure 9.2: [code/queue test1.hny] Using a concurrent queue

62

https://harmony.cs.cornell.edu/code/queue_nonatom.hny
https://harmony.cs.cornell.edu/code/queue.hny
https://harmony.cs.cornell.edu/code/queue_test1.hny

concurrent program that uses a queue. But this concurrent specification is too much for compilers
to handle; we have to write down how to implement it.

While in the concurrent specification operations cannot overlap execution, the same need not be
true for an implementation. Indeed, we will show two implementations of a concurrent queue. The
first uses critical sections, ensuring that operations cannot overlap. The second allows a get and a
put operation on a non-empty queue to execute simultaneously. Both are correct implementations
of the concurrent queue specification.

In both implementations, the queue data structure is maintained as a linked list. They use the
alloc module for dynamic allocation of nodes in the list, which provides methods malloc() and
free(). malloc(v) returns a new memory location initialized to v, which should be released with
free() when it is no longer in use.

The implementation in Figure 9.3 uses a lock-based critical section to operate on the data
structure. The implementation maintains a head pointer to the first element in the list and a tail

pointer to the last element in the list. The head pointer is None if and only if the queue is empty.
(None is a special address value that is not the address of any memory location.)

Queue() returns the initial value for a queue object consisting of a None head and tail pointer
and a lock. The put(q, v) and get(q) methods both take a pointer q to the queue object. It has
to be a pointer rather than the value of the queue object because both methods must be able to
modify the queue object. Before a method accesses the value of the head or tail of the queue, it first
obtains the lock. When the method is done, it releases the lock. Doing so prevents concurrently
executing methods from witnessing an intermediate, inconsistent state of the linked list.

Importantly, note Lines 7 and 8 in Figure 9.2. It would be incorrect to replace these by:

assert queue.get(q) in { None, 1, 2 }

The reason is that queue.get() changes the state by acquiring a lock, but the expressions in
assert statements (or invariant and finally statements) must be predicates over the state and
thus are not allowed to change the state.

The implementation in Figure 9.3 uses a single lock to protect the queue data structure. A
thread acquires the lock before any access and releases it afterwards. This is possibly the simplest
way to make a data structure concurrent. However, it can cause significant contention over the lock
between a producer and a consumer, reducing performance by serializing operations.

Figure 9.4 shows another concurrent queue implementation that addresses this problem [MS96].
It is based on the insight that a put method operates on the tail of a queue, while a get method
operates on the head, and so in theory they should be able to execute concurrently. Although
the algorithm is well-known, what is not often realized (because it is not stated explicitly in the
paper) is that it requires sequentially consistent memory. The algorithm must be coded carefully
to work correctly with modern programming languages and computer hardware that generally lack
sequentially consistent memory.

The implementation uses separate locks for the head and the tail, allowing a put and a get

operation to proceed concurrently. The implementation uses a dummy node (a.k.a. sentinel node)
at the head of the linked list. Except initially, the dummy node is the last node that was dequeued.
Using dummy nodes can simplify implementations because they can reduce the number of excep-
tional conditions. In this case, note that neither the head nor tail pointer are ever None, reducing
the need for if statements in the code.

63

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def Queue() returns empty:
5 empty = { .head : None, .tail : None, .lock : Lock() }
6

7 def put(q, v):
8 let node = malloc({ .value: v, .next : None }):
9 acquire(?q→lock)

10 if q→tail == None:
11 q→tail = q→head = node
12 else:
13 q→tail→next = node
14 q→tail = node
15 release(?q→lock)
16

17 def get(q) returns next :
18 acquire(?q→lock)
19 let node = q→head :
20 if node == None:
21 next = None
22 else:
23 next = node→value
24 q→head = node→next
25 if q→head == None:
26 q→tail = None
27 free(node)
28 release(?q→lock)

Figure 9.3: [code/queue lock.hny] An implementation of a concurrent queue data structure and
a depiction of a queue with three elements

64

https://harmony.cs.cornell.edu/code/queue_lock.hny

1 from synch import Lock, acquire, release, atomic load, atomic store

2 from alloc import malloc, free
3

4 def Queue() returns empty:
5 let dummy = malloc({ .value: (), .next : None }):
6 empty = { .head : dummy, .tail : dummy,
7 .hdlock : Lock(), .tllock : Lock() }
8

9 def put(q, v):
10 let node = malloc({ .value: v, .next : None }):
11 acquire(?q→tllock)
12 atomic store(?q→tail→next, node)
13 q→tail = node
14 release(?q→tllock)
15

16 def get(q) returns next :
17 acquire(?q→hdlock)
18 let dummy = q→head
19 let node = atomic load(?dummy→next):
20 if node == None:
21 next = None
22 release(?q→hdlock)
23 else:
24 next = node→value
25 q→head = node
26 release(?q→hdlock)
27 free(dummy)

Figure 9.4: [code/queue MS.hny] A queue with separate locks for enqueuing and dequeuing items
and a depiction of a queue with two elements

65

https://harmony.cs.cornell.edu/code/queue_MS.hny

1 from alloc import malloc

2

3 def SetObject() returns object :
4 object = malloc({})
5

6 def insert(s, v):
7 atomically !s |= {v}
8

9 def remove(s, v):
10 atomically !s –= {v}
11

12 def contains(s, v) returns present :
13 atomically present = v in !s

Figure 9.5: [code/setobj.hny] Specification of a concurrent set object

The problem with the original specification of the algorithm is when the queue is empty and
there are concurrent get and put operations. They obtain separate locks and then concurrently
access the next field in the dummy node—a data race with undefined semantics in most modern
environments. To get around this problem, the implementation in Figure 9.4 uses atomic load and
atomic store from the synch module.

A queue has the nice property that only the head or the tail can be accessed. However, in
many data structures it is necessary to “walk” the entire data structure, an operation that can take
significant time. In such a case, a single lock (known as a “big lock”) for the entire data structure
might restrict concurrency to an unacceptable level. To reduce the granularity of locking, each node
in the data structure must be endowed with its own lock instead.

Figure 9.5 gives the specification of a concurrent set object. SetObject() returns a pointer to
a variable that contains an empty set, rather than returning an empty set value. As such, it is
more like an object in an object-oriented language than like a value in its own right. Values can
be added to the set object using insert() or deleted using remove(). Method contains() checks
if a particular value is in the list. Figure 9.6 contains a simple (although not very thorough) test
program to demonstrate the use of set objects.

Figure 9.7 implements a concurrent set object using an ordered linked list without duplicates.
The list has two dummy “book-end” nodes with values (–1, None) and (1, None). A value v
is stored as (0, v)—note that for any value v, (–1, None) < (0, v) < (1, None) (because of
lexicographical ordering of tuples). An invariant of the algorithm is that at any point in time the
list is “valid,” starting with a (–1, None) node and ending with an (1, None) node.

Each node has a lock, a value, and next, a pointer to the next node (which is None for the
(1, None) node to mark the end of the list). The find(lst, v) helper method first finds and locks
two consecutive nodes before and after such that before→data.value < (0, v) <= after→data.value.
The method does so by performing something called hand-over-hand locking. It first locks the first
node, which is the (–1, None) node. Then, iteratively, it obtains a lock on the next node and

66

https://harmony.cs.cornell.edu/code/setobj.hny

1 from setobj import *
2

3 myset = SetObject()
4

5 def thread1():
6 insert(myset, 1)
7 let x = contains(myset, 1):
8 assert x
9

10 def thread2(v):
11 insert(myset, v)
12 remove(myset, v)
13

14 spawn thread1()
15 spawn thread2(0)
16 spawn thread2(2)

Figure 9.6: [code/setobj test1.hny] Test code for set objects

release the lock on the last one, and so on, similar to climbing a rope hand-over-hand. Using find,
the insert, remove, and contains methods are fairly straightforward to implement.

Exercises

9.1 Add a method head(q) that returns the value at the head of the queue, or None if the queue
is empty.

9.2 Add a method contains(q, v) to Figure 9.1(b) that checks to see if v is in queue q.

9.3 Add a method length(q) to Figure 9.3 that returns the length of the given queue. The
complexity of the method should be O(1), which is to say that you should maintain the length of
the queue as a field member and update it in put and get.

9.4 Write a method check(q) that checks the integrity of the queue in Figure 9.3. In particular, it
should check the following integrity properties:

� If the list is empty, q→tail should be None. Otherwise, the last element in the linked list
starting from q→head should equal q→head. Moreover, q→tail→next should be None;

� The length field that you added in Exercise 9.4 should equal the length of the list.

Method check(q) should not obtain a lock; instead add the following line just before releasing the
lock in put and get:

assert check()

67

https://harmony.cs.cornell.edu/code/setobj_test1.hny

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def node(v, n) returns node: # allocate and initialize a new list node
5 node = malloc({ .lock : Lock(), .value: v, .next : n })
6

7 def find(lst, v) returns pair :
8 var before = lst
9 acquire(?before→lock)

10 var after = before→next
11 acquire(?after→lock)
12 while after→value < (0, v):
13 release(?before→lock)
14 before = after
15 after = before→next
16 acquire(?after→lock)
17 pair = (before, after)
18

19 def SetObject() returns object :
20 object = node((–1, None), node((1, None), None))
21

22 def insert(lst, v):
23 let before, after = find(lst, v):
24 if after→value != (0, v):
25 before→next = node((0, v), after)
26 release(?after→lock)
27 release(?before→lock)
28

29 def remove(lst, v):
30 let before, after = find(lst, v):
31 if after→value == (0, v):
32 before→next = after→next
33 free(after)
34 else:
35 release(?after→lock)
36 release(?before→lock)
37

38 def contains(lst, v) returns present :
39 let before, after = find(lst, v):
40 present = after→value == (0, v)
41 release(?after→lock)
42 release(?before→lock)

Figure 9.7: [code/setobj linkedlist.hny] Implementation of a set of values using a linked list with
fine-grained locking

68

https://harmony.cs.cornell.edu/code/setobj_linkedlist.hny

9.5 Add a method insert(q, v) to Figure 9.3 that inserts v at the head of queue q.

9.6 Add a method remove(q, v) to Figure 9.3 that removes all occurrences of v, if any, from queue
q.

9.7 The test program in Figure 9.2 is not a thorough test program. Design and implement a test
program for Figure 9.2. Make sure you test the test program by trying it out against some buggy
queue implementations. (You will learn more about testing concurrent programs in Chapter 10.)

9.8 Add methods to the data structure in Figure 9.7 that report the size of the list, the minimum
value in the list, the maximum value in the list, and the sum of the values in the list. (All these
should ignore the two end nodes.)

9.9 Create a thread-safe sorted binary tree. Implement a module bintree with methods BinTree()
to create a new binary tree, insert(t, v) that inserts v into tree t, and contains(t, v) that checks
if v is in tree t. Use a single lock per binary tree.

9.10 Create a binary tree that uses, instead of a single lock per tree, a lock for each node in the
tree.

69

Chapter 10

Testing: Checking Behaviors

Testing is a way to increase confidence in the correctness of an implementation. Figure 9.2
demonstrates how concurrent queues may be used, but it is not a very thorough test program for
an implementation such as the one in Figure 9.3 and does little to increase our confidence in its
correctness. To wit, if get() always returned 1, the program would find no problems. In this
chapter, we will look at approaches to testing concurrent code.

Checking the behavior of a concurrent queue can be tricky. For example, suppose that, in some
execution of Figure 9.2, thread 1 invokes put(?demoq, 1) and then thread 2 invokes put(?demoq, 2)
and then thread 3 invokes get(?demoq). What value should thread 3 obtain? The answer is:
It depends, or in other words, not enough information is provided. All of 1, 2, and None are
possible outcomes. Certainly, if put(?demoq, 1) completes before put(?demoq, 2) is invoked and
put(?demoq, 2) completes before get(?demoq) is invoked, then 1 is the only correct result. However,
if put(?demoq, 1) is invoked first, and then put(?demoq, 2) is invoked before put(?demoq, 1) has
completed, then those two operations are executing concurrently, and it might come to pass that 2
is enqueued before 1. In that case, if get(?demoq) is invoked after both those operations complete,
both 1 and 2 are possible results, but None cannot be. However, if get(?demoq) is invoked before
the other two operations complete, then None is a valid outcome as well, even if the other two
operations were invoked before get(?demoq) was invoked.

The issue is that operations take time, and therefore operations can overlap. While locks reduce
the amount to which operations can overlap, they do not completely eliminate it, and obtaining a
lock takes time as well. Unlike critical sections, it turns out that checking the correct behavior of a
queue is difficult to do with assertions alone because it is difficult to characterize the set of correct
behaviors of a concurrent queue.

Behaviors say something about how we got to a state. The same state can be reached by multiple
behaviors, and the behaviors are often an integral part of whether a program is correct or not. Just
because a state satisfies some invariant—however important—does not mean that the state is valid
given the sequence of operations. For example, a state in which the queue is empty is certainly a
valid state in its own right, but if the last operation to get there was an enqueue operation, there
must be a bug in the program. It can therefore be important to capture the behaviors. We could
store behaviors in the state itself by adding what is known as a history variable that keeps track of
all the operations. While this can be useful for correctness proofs, for model checking this approach

70

1 import queue, queueconc
2

3 const NOPS = 4
4 const VALUES = { 1..NOPS }
5

6 specq = queue.Queue()
7 implq = queueconc.Queue()
8

9 for i in {1..NOPS}:
10 let op = choose({ "get", "put" }):
11 if op == "put":
12 let v = choose(VALUES):
13 queueconc.put(?implq, v)
14 queue.put(?specq, v)
15 else:
16 let v = queueconc.get(?implq)
17 let w = queue.get(?specq):
18 assert v == w

Figure 10.1: [code/queue test seq.hny] Sequential queue test

presents a problem: Introducing this additional state can lead to state explosion or even turn a
finite model (a model with a finite number of states) into an infinite one.

Fortunately, if we have a specification of a queue, we can generate the set of correct behaviors
of a queue. For simplicity, we will first check if the queue implementation in Figure 9.3 meets the
sequential queue specification in Figure 9.1(a). To check if the queue implementation meets the
specification, we need to see if any sequence of queue operations in the implementation matches a
corresponding sequence in the specification. We say that the implementation and the specification
have the same behaviors or are behaviorally equivalent. This is called differential testing.

Figure 10.1 presents a differential test program for sequences of up to NOPS queue operations.
It maintains two queues:

� specq : the queue of the specification;

� implq : the queue of the implementation.

For each operation, the code first chooses whether to perform a get or put operation. In the case
of a put operation, the code also chooses which value to append to the queue. All operations
are performed on both the queue implementation and the queue specification. In the case of get,
the results of the operation on both the implementation and specification are checked against one
another.

Test programs themselves should be tested. Just because a test program works with a particular
implementation does not mean the implementation is correct—it may be that the implementation
is incorrect but the test program does not have enough coverage to find any bugs in the implemen-
tation. So, run a test program like this with a variety of queue implementations that have known

71

https://harmony.cs.cornell.edu/code/queue_test_seq.hny

bugs in them and make sure that the test program finds them. Conversely, a test program may be
broken in that it finds bugs that do not exist. In my experience, it is often harder to implement
the test program than the algorithm that the test program tests.

As with any other test program, Figure 10.1 may not trigger extant bugs, but it nonetheless
inspires reasonable confidence that the queue implementation is correct, at least sequentially. The
higher NOPS, the higher the confidence. It is possible to write similar programs in other languages
such as Python, but the choose expression in Harmony makes it relatively easy to explore all corner
cases.

For example, a common programming mistake is to forget to update the tail pointer in get()
in case the queue becomes empty. Normally, it is a surprisingly tricky bug to find. You can
comment out those lines in Figure 9.3 and run the test program—it should easily find the bug and
explain exactly how the bug manifests itself, adding confidence that the test program is reasonably
thorough.

The test program also finds some common mistakes in using locks, such as forgetting to release
a lock when the queue is empty, but it is not designed to find concurrency bugs in general. If you
remove all acquire() and release() calls from Figure 9.3, the test program will not (and should
not) find any errors, but it would be an incorrect implementation of a concurrent queue.

We will now see how to test whether the queue implementation meets the concurrent queue
specification or not. Figure 9.1(b) shows the concurrent queue specification. It is similar to the
sequential specification in Figure 9.1(a) but makes all operations (except instantiation itself) atomic.
This means that the effect of an operation appears to happens instantaneously sometime between
invoking the operation and the operation completing, and in particular the effects cannot appear
to overlap, while the operations themselves can. Testing the implementation of a concurrent queue
specification is trickier than testing the implementation of a sequential one because there are many
more scenarios to check.

We would like a way that—similar to the sequential test—systematically compares behaviors of
the concurrent queue implementation with behaviors of the concurrent queue specification. But we
cannot do this by composing the specification and the implementation and simply run the same test
operations on both as we did before—concurrency make the operations non-determistic and thus
the specification and implementation of a single execution might produce different results, even if
both are correct. Instead, we will create a test program that tries various concurrent combinations
of queue operations, and run it twice: once against the specification of the concurrent queue and
once against the implementation. In the second phase, we check if the behaviors obtained from
running the implementation are also behaviors obtained from the specification.

Figure 10.2 shows the test program. It starts N PUT threads doing a put operation and N GET

threads doing a get operation. In case of a put operation, the thread enqueues its own name (which
is provided as an argument to the thread). In order to capture the behaviors, each thread prints
what operation it is about to perform, and afterwards it prints that the operation has completed
(including the return value if any). The figure also shows the behavior DFA that captures the
generated behaviors in case N PUT = N GET = 1. You can see that if get() completes before put(1)
is invoked, then get() must return None. Vice versa, if put(1) completes before get() is invoked,
then get() must return 1. Otherwise get() can return either None or 1 depending on how the two
operations are serialized.

This is probably much like you would do if you were trying to find a bug in a program. Figure 10.3
shows a Python implementation of the same test program. You can run it a bunch of times and
manually check the output. There are, however, two problems with this approach. First, it is often

72

1 import queue

2

3 const N PUT = 2
4 const N GET = 2
5 q = queue.Queue()
6

7 def put test(self):
8 print("call put", self)
9 queue.put(?q, self)

10 print("done put", self)
11

12 def get test(self):
13 print("call get", self)
14 let v = queue.get(?q):
15 print("done get", self, v)
16

17 for i in {1..N PUT}:
18 spawn put test(i)
19 for i in {1..N GET}:
20 spawn get test(i)

Figure 10.2: [code/queue btest2.hny] Concurrent queue test. The behavior DFA is for
N PUT = N GET = 1.

73

https://harmony.cs.cornell.edu/code/queue_btest2.hny

1 import queue, threading, random

2

3 N_PUT = 2

4 N_GET = 2

5 q = queue.Queue()

6

7 def put_test(self):

8 print("call put", self)

9 q.put(self)

10 print("done put", self)

11

12 def get_test(self):

13 print("call get", self)

14 try:

15 v = q.get(block=False)

16 print("done get", self, v)

17 except queue.Empty:

18 print("done get empty", self)

19

20 for i in range(N_PUT):

21 threading.Thread(target=put_test, args=(i,)).start()

22 for i in range(N_GET):

23 threading.Thread(target=get_test, args=(i,)).start()

Figure 10.3: [python/queue btest2.py] Python implementation of Figure 10.2

74

https://harmony.cs.cornell.edu/python/queue_btest2.py

1 from synch import Lock, acquire, release
2

3 def Queue() returns empty:
4 empty = { .elements: [], .lock : Lock() }
5

6 def put(q, v):
7 acquire(?q→lock)
8 q→elements += [v,]
9 release(?q→lock)

10

11 def get(q) returns next :
12 acquire(?q→lock)
13 if q→elements == []:
14 next = None
15 else:
16 next = q→elements[0]
17 release(?q→lock)
18 acquire(?q→lock)
19 if q→elements != []:
20 del q→elements[0]
21 release(?q→lock)

Figure 10.4: [code/queue broken1.hny] A correct sequential but not a correct concurrent queue
implementation

75

https://harmony.cs.cornell.edu/code/queue_broken1.hny

difficult to check if the behaviors you find are correct ones, and it is easy to overlook problems in
the output. Second, the test program may not check all possible behaviors.

Using Harmony, these problems can be avoided. One approach is to compare the two behavior
DFAs by manual inspection:

$ harmony -c N_PUT=1 -c N_GET=1 code/queue_btest2.hny

$ harmony -c N_PUT=1 -c N_GET=1 -m queue=queue_lock code/queue_btest2.hny

You can try this for various N PUT and N GET, slowly increasing their values, although it gets
increasingly harder to check by hand that the generated DFAs are the same. For example, run the
test program against Figure 10.4, which is an incorrect implementation of the concurrent queue
specification in that it cannot handle concurrent get operations correctly. Try, for example:

$ harmony -c N_GET=2 -o x.png code/queue_btest2.hny

$ harmony -c N_GET=2 -o y.png -m queue=queue_broken1 code/queue_btest2.hny

and compare the finite state automata in x.png and y.png. If you look carefully, you will find
that the two behaviors are not the same, although the differences are hard to spot. Harmony does
not necessarily detect any problems itself this way. This is because the test program only outputs
the behaviors—it does not check if they are correct.

Harmony does have a way to check the behaviors of one program against the behaviors of
another. In particular, we want to check if the behaviors of the an implementation matches the
behaviors of the specification. The following shows, for example, how to check the queue lock.hny

implementation on the command line:

$ harmony -o queue.hfa code/queue_btest2.hny

$ harmony -B queue.hfa -m queue=queue_lock code/queue_btest2.hny

The first command runs the code/queue btest2.hny program (with the default 4 threads)
and writes a representation of the output DFA in the file queue.hfa. The second command runs
the same test program, but using the queue implementation in the file code/queue lock.hny.
Moreover, it reads the DFA in queue.hfa to check if every behavior of the second run of the test
program is also a behavior of the first run.

Now try the same using the queue broken1.hny implementation:

$ harmony -o queue.hfa code/queue_btest2.hny

$ harmony -B queue.hfa -m queue=queue_broken1 code/queue_btest2.hny

This way, Harmony will find a “behavior violation” that is hard to spot manually.

Exercises

10.1 Figure 7.1 shows a specification of a lock. Write a program that checks the behaviors of lock
implementations such as Figure 8.2 and Figure 8.3. That is, it should not rely on assertions such
as in Figure 5.2.

76

10.2 Write a Harmony program that checks if Figure 9.7 satisfies the specification of Figure 9.5
sequentially.

10.3 Write a Harmony program that checks if Figure 9.7 satisfies the specification of Figure 9.5
concurrently.

77

Chapter 11

Debugging

So, you wrote a Harmony program and Harmony reports a problem. Often you may just be able to
figure it out by staring at the code and going through some easy scenarios, but what if you don’t?
The output of Harmony can be helpful in that case.

Figure 11.1 contains an attempt at a queue implementation where the queue is implemented by
a linked list, with the first node being a dummy node to prevent data races. Each node in the list
contains a lock. The put() method walks the list until it gets to the last node, each time acquiring
the lock to access the node’s fields. When put() gets to the last node in the list, it appends a new
one. The get() method locks the first (dummy) node, removes the second from the list and frees
it. The method returns the value from the removed node.

Let us run the code through the test programs in the last chapter. Harmony does not detect
any issues with the sequential test in Figure 10.1. (Run this using the -m flag like this: harmony

-m queueconc=queue broken2 code/queue test seq.hny) However, when we run the new queue
code through the test in Figure 10.2, Harmony reports a safety violation (even without specifying
a behavior). Figure 11.2 shows the command line to reproduce this and the first few lines of
markdown output.

Before we go look at the details of what went wrong, we want to make sure that we generate the
simplest scenario. So, first we want to explore what the smallest N PUT and N GET parameters are.
With some experimentation, we find that N PUT = 2 and N GET = 1 generates a problem (harmony -m

queue=queue broken2 -c N PUT=2 -c N GET=1 code/queue btest2.hny)). Figure 11.3 shows
the HTML output.

There is quite a bit of information in the HTML output. Let’s start with looking at the
red text. Harmony found a safety violation (something bad happened during one of the possi-
ble executions), and in particular put test(1) (thread T1) was trying to dereference the address
?alloc$pool [0]["lock"].

The alloc module maintains a shared array pool that it uses for dynamic allocation. Apparently
T1 tried to access pool [0], but it does not exist, meaning that either it was not yet allocated, or it
had been freed since it was allocated. When we look at the top half of the figure under “Shared
Variables”, we see that in fact thread T2 allocated pool [0] in turn 2 (during put test(2)), but T3
freed it in turn 4 (during get test(1)).

78

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def Queue() returns empty:
5 empty = { .next : None, .value: None, .lock : Lock() }
6

7 def put(q, v):
8 let node = malloc({ .next : None, .value: v, .lock : Lock() }):
9 var nq = q

10 while nq != None:
11 acquire(?nq→lock)
12 let n = nq→next :
13 if n == None:
14 nq→next = node
15 release(?nq→lock)
16 nq = n
17

18 def get(q) returns next :
19 acquire(?q→lock)
20 if q→next == None:
21 next = None
22 else:
23 let node = q→next :
24 q→next = node→next
25 next = node→value
26 free(node)
27 release(?q→lock)

Figure 11.1: [code/queue broken2.hny] A buggy queue implementation

79

https://harmony.cs.cornell.edu/code/queue_broken2.hny

Summary: something went wrong in an execution
Here is a summary of an execution that exhibits the issue:

� Schedule thread T0: init()
– Line alloc/1: Initialize alloc$pool to {:}
– Line alloc/2: Initialize alloc$next to 0
– Line 5: Initialize q to { ”lock”: False, ”next”: None, ”value”: None }
– Thread terminated

� Schedule thread T1: put test(1)
– Line 8: Print [”call put”, 1]
– Preempted in put test(1) – put(?q, 1) – malloc({ ”lock”: False, ”next”: None,

”value”: 1 }) about to execute atomic section in line alloc/7
� Schedule thread T4: get test(2)

– Line 13: Print [”call get”, 2]
– Preempted in get test(2) – get(?q) – acquire(?q[”lock”]) about to execute atomic

section in line synch/35
� Schedule thread T1: put test(1) – put(?q, 1) – malloc({ ”lock”: False, ”next”: None,

”value”: 1 })
– Line alloc/8: Initialize alloc$pool[0] to { ”lock”: False, ”next”: None, ”value”: 1
}

– Line alloc/10: Set alloc$next to 1 (was 0)
– Line synch/36: Set q[”lock”] to True (was False)
– Line queue/14: Set q[”next”] to ?alloc$pool[0] (was None)
– Line synch/41: Set q[”lock”] to False (was True)
– Preempted in put test(1) about to print [”done put”, 1] in line 10

� Schedule thread T2: put test(2)
– Line 8: Print [”call put”, 2]
– Line alloc/8: Initialize alloc$pool[1] to { ”lock”: False, ”next”: None, ”value”: 2
}

– Line alloc/10: Set alloc$next to 2 (was 1)
– Line synch/36: Set q[”lock”] to True (was False)
– Line synch/41: Set q[”lock”] to False (was True)
– Preempted in put test(2) – put(?q, 2) – acquire(?alloc$pool[0][”lock”]) about to

execute atomic section in line synch/35
...

Figure 11.2: Running Figure 10.2 against Figure 11.1

80

Figure 11.3: HTML output of Figure 11.2 but for N PUT=2 and N GET=1
.

81

https://harmony.cs.cornell.edu/output/queue_btest2.htm

Looking at the stack traces in the bottom table, we can see that T3 was in the process of
executing release(?q.lock) within get(?q). T1 is currently executing acquire(?alloc$pool [0].lock)
within put(?q, 1), but alloc$pool [0] does not exist.

So, how did we get there? In the top we can see that the order of events was the following:

1. initialization completed, with q being { .lock : False, .next : None, .value: None };

2. thread T2 (put test(2)) ran and finished executing put(2) (and is about to print ["done
put", 2]). We can see that q.next now points to alloc$pool [0], which the thread must have
allocated. The contents is { .lock : False, .next : None, .value: 2 }, as expected;

3. thread T1 (put test(1)) started running, calling put(?q, 1). We can see that T1 got as far
as allocating a node, but it has not yet added the node to the end of the queue. T1 then tries
to acquire alloc$pool [0].lock ;

4. thread T3 (get test(1)) started running, calling get(?q). We can also see that T3 freed
pool [0], and is now releasing q.lock ;

5. thread T1 resumes and tries to access alloc$pool [0], which no longer exists (because T3 just
freed it).

Clearly there was a race in which T1 was trying to lock pool [0].lock (which contained the node
with the value 1) while T3 was freeing that very same node, and T1 lost the race. More precisely,
T1 was executing put(?q, 1), when T3 preempted it with get(?q) and removed the node that T1
was trying to access. But why did the locks not prevent this?

It is time to start stepping through the code that has been executed before this happened. This
is sometimes known as reverse debugging. In fact, Harmony allows you to step through an execution
forwards and backwards. In this case, we first want to see what T2 is doing. You can click its first
(top-left) orange box to time-travel to that part in the execution. The boxes are color-coded: Each
method has its own color. Now by hitting the 〈return〉 key repeatedly, we can quickly skip through
the code, line by line. T1 first calls put(?q, 1) and then allocates a new node initialized with a lock.
Keep stepping until it executes nq = q. Select 〈return〉 once more and inspect the state of T1 in
the lower-right corner. You can see that variable nq is initialized to ?q. T1 then enters into the
while loop and tries to acquire nq→lock. This succeeds, and next T1 executes let n = nq→next.
Now n = ?alloc$pool [0], which is not None. T1 then releases nq→lock (nq points to q). T1 then
sets nq to n, which is still alloc$pool [0]. Finally, it calls acquire(?nq→lock). But before it can
complete that operation, T3 runs next.

T3 chooses "get" and then goes on to invoke get(?q). This first successfully acquires q→lock.
T3 then finds out that q→next points to alloc$pool [0]. T3 sets node to alloc$pool [0] as well and
sets q→next to node→next. T3 sets the method result next to node→value (which is 2) and then
frees node. This is where the problem is—T1 is about to acquire the lock in that same node.

To fix the code without changing the data structure, we can use hand-over-hand locking (Chap-
ter 9). Figure 11.4 shows an implementation that uses hand-over-hand locking both for put() and
for get(). It passes all tests.

82

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def Queue() returns empty:
5 empty = { .next : None, .value: None, .lock : Lock() }
6

7 def put(q, v):
8 var nq = q
9 let node = malloc({ .next : None, .value: v, .lock : Lock() }):

10 acquire(?nq→lock)
11 var n = nq→next
12 while n != None:
13 acquire(?n→lock)
14 release(?nq→lock)
15 nq = n
16 n = n→next
17 nq→next = node
18 release(?nq→lock)
19

20 def get(q) returns next :
21 acquire(?q→lock)
22 if q→next == None:
23 next = None
24 else:
25 let node = q→next :
26 acquire(?node→lock)
27 q→next = node→next
28 next = node→value
29 release(?node→lock)
30 free(node)
31 release(?q→lock)

Figure 11.4: [code/queue fix.hny] Queue implementation with hand-over-hand locking

83

https://harmony.cs.cornell.edu/code/queue_fix.hny

Chapter 12

Conditional Waiting

Critical sections enable multiple threads to easily share data structures whose modification requires
multiple steps. A critical section only allows one thread to execute the code of the critical section
at a time. Therefore, when a thread arrives at a critical section, the thread waits until there is no
other thread in the critical section.

A thread that is waiting for a condition without changing shared variables is considered blocked.
In other words, a blocked thread can only change shared variables if some other thread changes
them first. A spinlock to protect a critical section is a good example: A thread that is waiting for
a spinlock does not change the state of the lock variable until it acquires the lock.

Sometimes it is useful for a thread to wait for additional conditions besides the critical section
being unoccupied. For example, when dequeuing from an empty shared queue, the thread may want
to block until the queue is non-empty. The alternative to blocking would be active busy waiting (or
also just busy waiting) where the thread repeatedly tries to dequeue an item until it is successful.

A thread that is active busy waiting until the queue is non-empty cannot make progress until
another thread enqueues an item. However, the thread is not considered blocked because it is
changing the shared state by repeatedly acquiring and releasing the lock. Doing so wastes CPU
cycles and adds contention to queue access.

We would like to find a solution to conditional waiting so that a thread blocks until the con-
dition holds—or at least most of the time. Before we do so, we will give two classic examples of
synchronization problems that involve conditional waiting: reader/writer locks and bounded buffers.

12.1 Reader/Writer Locks

Locks are useful when accessing a shared data structure. By preventing more than one thread
from accessing the data structure at the same time, conflicting accesses are avoided. However, not all
concurrent accesses conflict, and opportunities for concurrency may be lost, hurting performance.
One important case is when multiple threads are simply reading the data structure. In many
applications, reads are the majority of all accesses, and read operations do not conflict with one
another. Allowing reads to proceed concurrently can significantly improve performance.

What we want is a special kind of lock that allows either (i) one writer or (ii) one or more
readers to acquire the lock. This is called a reader/writer lock [CHP71].

84

1 def RWlock() returns lock:
2 lock = { .nreaders: 0, .nwriters: 0 }
3

4 def read acquire(rw):
5 atomically when rw→nwriters == 0:
6 rw→nreaders += 1
7

8 def read release(rw):
9 atomically rw→nreaders –= 1

10

11 def write acquire(rw):
12 atomically when (rw→nreaders == 0) and (rw→nwriters == 0):
13 rw→nwriters = 1
14

15 def write release(rw):
16 atomically rw→nwriters = 0

Figure 12.1: [code/rwlock.hny] Specification of reader/writer locks

A reader/writer lock is an object whose abstract state contains two integer counters (see Fig-
ure 12.1):

1. nreaders: the number of readers

2. nwriters: the number of writers

satisfying the following invariant: (nreaders ≥ 0 ∧ nwriters = 0) ∨ (nreaders = 0 ∧ nwriters = 1).
There are four operations on a reader/writer lock rw :

� read acquire(rw): waits until nwriters = 0 and then increments nreaders;

� read release(rw): decrements nreaders;

� write acquire(rw): waits until nreaders = nwriters = 0 and then sets nwriters to 1;

� write release(rw): sets nwriters to 0.

Similar to ordinary locks, a thread is restricted in how it is allowed to invoke these operations.
In particular, a thread can only release a reader/writer lock for reading if it acquired the lock for
reading and the same for writing.

Figure 12.2 shows how reader/writer locks operations may be tested. A problem with this
test is that it does not find a problem with an implementation like the one in Figure 12.3. This
implementation implements a reader/writer lock as an ordinary lock, and thus lets only one thread
in the critical section at a time. In some sense, the implementation is correct because it satisfies
the invariant, but it is not a desirable implementation because it does not allow multiple readers to
enter the critical section at the same time. For a case like this one, it is better to compare behaviors
between the specification and the implementation.

85

https://harmony.cs.cornell.edu/code/rwlock.hny

1 import rwlock

2

3 nreaders = nwriters = 0
4 invariant ((nreaders >= 0) and (nwriters == 0)) or
5 ((nreaders == 0) and (nwriters == 1))
6

7 const NOPS = 4
8

9 rw = rwlock.RWlock()
10

11 def thread():
12 while choose({ False, True }):
13 if choose({ "read", "write" }) == "read":
14 rwlock.read acquire(?rw)
15 atomically nreaders += 1
16 atomically nreaders –= 1
17 rwlock.read release(?rw)
18 else: # write
19 rwlock.write acquire(?rw)
20 atomically nwriters += 1
21 atomically nwriters –= 1
22 rwlock.write release(?rw)
23

24 for i in {1..NOPS}:
25 spawn thread()

Figure 12.2: [code/rwlock test1.hny] Test code for reader/writer locks

86

https://harmony.cs.cornell.edu/code/rwlock_test1.hny

1 import synch

2

3 def RWlock() returns lock:
4 lock = synch.Lock()
5

6 def read acquire(rw):
7 synch.acquire(rw)
8

9 def read release(rw):
10 synch.release(rw)
11

12 def write acquire(rw):
13 synch.acquire(rw)
14

15 def write release(rw):
16 synch.release(rw)

Figure 12.3: [code/rwlock cheat.hny] ”Cheating” reader/writer lock

Figure 12.4 is the same test as Figure 12.2 but prints identifying information before and every
lock operation. Now we can compare behaviors as follows:

$ harmony -o rw.hfa -cNOPS=2 code/rwlock_btest.hny

$ harmony -B rw.hfa -cNOPS=2 -m rwlock=rwlock_cheat code/rwlock_btest.hny

The second command will print a warning that there are behaviors in the specification that are
not achieved by the implementation.

Figure 12.5 illustrates an implementation of a reader/writer lock that uses active busy waiting.
The solution is careful only to access the variables while holding a lock and at the same time
careful to release the lock regularly to allow other threads to change the state. Nonetheless, it is
an undesirable solution, as it wastes CPU cycles. Harmony complains about this solution.

12.2 Bounded Buffer

A bounded buffer is a queue with the usual put/get interface, but implemented using a buffer
of a certain maximum length. If the buffer is full, an enqueuer must wait; if the buffer is empty, a
dequeuer must wait. Figure 12.6 specifies a bounded buffer. It is similar to the implementation in
Figure 9.1(b) but adds checking for bounds. Coming up with a good implementation is known as
the “Producer/Consumer Problem” and was proposed by Dijkstra [Dij72]. Multiple producers and
multiple consumers may all share the same bounded buffer.

The producer/consumer pattern is common. Threads may be arranged in pipelines, where each
upstream thread is a producer and each downstream thread is a consumer. Or threads may be

87

https://harmony.cs.cornell.edu/code/rwlock_cheat.hny

1 import rwlock

2

3 const NOPS = 3
4

5 rw = rwlock.RWlock()
6

7 def thread(self):
8 while choose({ False, True }):
9 if choose({ "read", "write" }) == "read":

10 print(self, "enter ra")
11 rwlock.read acquire(?rw)
12 print(self, "exit ra")
13

14 print(self, "enter rr")
15 rwlock.read release(?rw)
16 print(self, "exit rr")
17 else: # write
18 print(self, "enter wa")
19 rwlock.write acquire(?rw)
20 print(self, "exit wa")
21

22 print(self, "enter wr")
23 rwlock.write release(?rw)
24 print(self, "enter wr")
25

26 for i in {1..NOPS}:
27 spawn thread(i)

Figure 12.4: [code/rwlock btest.hny] A behavioral test of reader/writer locks

88

https://harmony.cs.cornell.edu/code/rwlock_btest.hny

1 from synch import Lock, acquire, release
2

3 def RWlock() returns lock:
4 lock = { .lock : Lock(), .nreaders: 0, .nwriters: 0 }
5

6 def read acquire(rw):
7 acquire(?rw→lock)
8 while rw→nwriters > 0:
9 release(?rw→lock)

10 acquire(?rw→lock)
11 rw→nreaders += 1
12 release(?rw→lock)
13

14 def read release(rw):
15 acquire(?rw→lock)
16 rw→nreaders –= 1
17 release(?rw→lock)
18

19 def write acquire(rw):
20 acquire(?rw→lock)
21 while rw→nreaders > 0 or rw→nwriters > 0:
22 release(?rw→lock)
23 acquire(?rw→lock)
24 rw→nwriters = 1
25 release(?rw→lock)
26

27 def write release(rw):
28 acquire(?rw→lock)
29 rw→nwriters = 0
30 release(?rw→lock)

Figure 12.5: [code/rwlock busy.hny] Busy waiting reader/writer lock

89

https://harmony.cs.cornell.edu/code/rwlock_busy.hny

1 def BoundedBuffer(size) returns buffer :
2 buffer = { .buffer : [], .size: size }
3

4 def put(bb, v):
5 atomically when len(bb→buffer) < bb→size:
6 bb→buffer += [v,]
7

8 def get(bb) returns next :
9 atomically when bb→buffer != []:

10 next = bb→buffer [0]
11 del bb→buffer [0]

Figure 12.6: [code/boundedbuffer.hny] Bounded buffer specification

arranged in a manager/worker pattern, with a manager producing jobs and workers consuming and
executing them in parallel. Or, in the client/server model, some thread may act as a server that
clients can send requests to and receive responses from. In that case, there is a bounded buffer for
each client/server pair. Clients produce requests and consume responses, while the server consumes
requests and produces responses.

Unlike an ordinary queue, where queues can grow arbitrarily, bounded buffers provide flow
control : if the consumer runs faster than the producer (or producers), it will automatically block
until there are new requests. Similarly, if the producers add requests at a rate that is higher than
the consumers can deal with, the producers are blocked. While a buffer of size 1 already provides
those properties, a larger buffer is able to deal with short load spikes without blocking producers.

Exercises

12.1 Optimize your solutions to Exercise 9.2 to use reader/writer locks.

90

https://harmony.cs.cornell.edu/code/boundedbuffer.hny

Chapter 13

Condition Variables

The last chapter introduced conditional waiting, but the implementations provided were unsat-
isfactory, either because they unnecessarily restricted behaviors or because they were inefficient.
Condition variables are a synchronization primitive designed to allow for general and efficient so-
lutions to conditional waiting problems.

In the late 70s, researchers at Xerox PARC, where among others the desktop and Ethernet
were invented, developed a new programming language called Mesa [LR80]. Mesa introduced vari-
ous important concepts to programming languages, including software exceptions and incremental
compilation. The Mesa language also incorporated a version of condition variables. There are
two main classes of condition variable semantics. Appendix I describes Hoare condition variables.
However, most programming languages today support the semantics of Mesa’s condition variables.
Below, we will use the semantics that Mesa provides.

A condition variable works in conjunction with a lock, often called mutex (for mutual exclusion)
in this context. A thread p that holds the mutex can invoke the wait operation on a condition
variable. This temporarily releases the mutex and places thread p on a queue associated with the
condition variable so p no longer executes. Another thread can notify the condition variable. If
the condition variable’s queue is non-empty, this operation removes a thread q from the queue
(according to some scheduling policy) and makes q runnable again. Thread q first re-acquires the
mutex before resuming from the wait operation it invoked. If, on the other hand, the condition
variable’s queue is empty, the notify operation is a no-op.

Condition variables also allow notifying multiple threads. For example, a thread can invoke
notify twice—if there are two or more threads waiting on the condition variable, two will be
resumed. Operation notify all (a.k.a. broadcast)) notifies all threads that are waiting on a
condition.

We demonstrate Mesa condition variables using an implementation of reader/writer locks. Fig-
ure 13.1 shows the code, which, the reader should note, is similar to the busy waiting solution in
Figure 12.5. mutex is the shared lock that protects the critical region. There are two condition
variables: Readers wait on r cond and writers wait on w cond. The implementation also keeps track
of the number of readers and writers in the critical section.

Note that wait is always invoked within a while loop that checks for the condition that the
thread is waiting for. It is imperative that there is always a while loop around any invocation of

91

1 from synch import *
2

3 def RWlock() returns lock:
4 lock = {
5 .nreaders: 0, .nwriters: 0, .mutex : Lock(),
6 .r cond : Condition(), .w cond : Condition()
7 }
8

9 def read acquire(rw):
10 acquire(?rw→mutex)
11 while rw→nwriters > 0:
12 wait(?rw→r cond, ?rw→mutex)
13 rw→nreaders += 1
14 release(?rw→mutex)
15

16 def read release(rw):
17 acquire(?rw→mutex)
18 rw→nreaders –= 1
19 if rw→nreaders == 0:
20 notify(?rw→w cond)
21 release(?rw→mutex)
22

23 def write acquire(rw):
24 acquire(?rw→mutex)
25 while rw→nreaders > 0 or rw→nwriters > 0:
26 wait(?rw→w cond, ?rw→mutex)
27 rw→nwriters = 1
28 release(?rw→mutex)
29

30 def write release(rw):
31 acquire(?rw→mutex)
32 rw→nwriters = 0
33 notify all(?rw→r cond)
34 notify(?rw→w cond)
35 release(?rw→mutex)

Figure 13.1: [code/rwlock cv.hny] Reader/Writer Lock using Mesa-style condition variables

92

https://harmony.cs.cornell.edu/code/rwlock_cv.hny

wait containing the negation of the condition that the thread is waiting for. Many implementation
of Mesa condition variables depend on this, and optimized implementations of condition variables
often allow so-called “spurious wakeups,” where wait may sometimes return even if the conditon
variable has not been notified. As a rule of thumb, one should always be able to replace wait by
release followed by acquire. This turns the solution into a busy-waiting one, inefficient but still
correct.

In read release, notify(?w cond) is invoked when there are no readers left, without checking
if there are writers waiting to enter. This is ok, because calling notify is a no-op if no thread is
waiting.

write release executes notify all(?r cond) as well as notify(?w cond). Because we do not
keep track of the number of waiting readers or writers, we have to conservatively assume that all
waiting readers can enter, or, alternatively, up to one waiting writer can enter. Awakening both
readers and writers is ok because both execute wait within a while loop, re-checking the condition
that they are waiting for. So, if both types of threads are waiting, either all the readers get to enter
next or one of the writers gets to enter next. (If you want to prevent waking up both readers and
a writer, then you can keep track of how many threads are waiting for each condition.)

When using condition variables, you have to be careful to invoke notify or notify all in the
right places. Much of the complexity of programming with condition variables is in figuring out
when to invoke notify and when to invoke notify all. As a rule of thumb: Be conservative—it is
better to wake up too many threads than too few. In case of doubt, use notify all. For example,
in Figure 13.1 it is ok, if inefficient, to replace the notify operations with notify all, but it would
be incorrect to replace the notify all operation by notify. Waking up too many threads may
lead to some inefficiency, but waking up too few may cause the application to get stuck. Harmony
can be particularly helpful here, as it examines each and every corner case. You can try to replace
each notify all with notify and see if every possible execution of the application still terminates.

Andrew Birrell’s paper on Programming with Threads gives an excellent introduction to working
with Mesa-style condition variables [Bir89]. They have been adopted by all major programming
languages. In Java, each object has a hidden lock and a hidden condition variable associated with
it. Methods declared with the synchronized keyword automatically obtain the lock. Java objects
also support wait, notify, and notify all. In addition, Java supports explicit allocations of locks
and condition variables. In Python, locks and condition variables must be explicitly declared. The
with statement simplifies acquiring and releasing a lock for a section of code. In C and C++,
support for locks and condition variables is entirely through libraries.

Harmony provides support for Mesa monitors through the Harmony synch module. Figure 13.2
shows the implementation of condition variables in the synch module. Condition() creates a new
condition variable. It is represented by a dictionary containing a bag of contexts of threads waiting
on the condition variable.

By the way, in Harmony a bag is usually represented by a dictionary that maps the elements
of the bag to their multiplicities. For example, the value { .a: 2, .b: 3 } represents a bag with two
copies of .a and three copies of .b. The bags module (Section B.3) contains a variety of handy
functions on bags.

Method wait adds the context of the thread—used as a unique identifier for the thread—to the
bag, incrementing the number of threads in the bag with the same context. The Harmony save
expression (Section C.3) returns a tuple containing a value (in this case ‘()’) and the context of the
thread. wait then loops until that count is restored to the value that it had upon entry to wait.
Method notify removes an arbitrary context from the bag, allowing one of the threads with that

93

1 def Condition() returns condition:
2 condition = bags.empty()
3

4 def wait(c, lk):
5 var cnt = 0
6 let , ctx = save():
7 atomically:
8 cnt = bags.multiplicity(!c, ctx)
9 !c = bags.add(!c, ctx)

10 !lk = False
11 atomically when (not !lk) and (bags.multiplicity(!c, ctx) <= cnt):
12 !lk = True
13

14 def notify(c):
15 atomically if !c != bags.empty():
16 !c = bags.remove(!c, bags.bchoose(!c))
17

18 def notify all(c):
19 !c = bags.empty()

Figure 13.2: [modules/synch.hny] Implementation of condition variables in the synch module

context to resume and re-acquire the lock associated with the monitor. notify all empties out
the entire bag, allowing all threads in the bag to resume.

Exercises

13.1 Implement a solution to the bounded buffer problem using Mesa condition variables.

13.2 Implement a “try lock” module using Mesa condition variables (see also Exercise 8.3). It
should have the following API:

1. tl = TryLock() # create a try lock

2. acquire(?tl) # acquire a try lock

3. tryAcquire(?tl) # attempt to acquire a try lock

4. release(?tl) # release a try lock

tryAcquire should not wait. Instead it should return True if the lock was successfully acquired
and False if the lock was not available.

13.3 Implement a thread-safe GPU allocator by modifying Figure 13.3. There are N GPUs iden-
tified by the numbers 1 through N. Method gpuAlloc() returns the identifier of an available GPU,
blocking if there is currently no GPU available. Method gpuRelease(gpu) releases the given GPU.
It never needs to block.

94

https://harmony.cs.cornell.edu/modules/synch.hny

1 const N = 10
2

3 availGPUs = {1..N}
4

5 def gpuAlloc() returns gpu:
6 gpu = choose(availGPUs)
7 availGPUs –= { result }
8

9 def gpuRelease(gpu):
10 availGPUs |= { gpu }

Figure 13.3: [code/gpu.hny] A thread-unsafe GPU allocator

13.4 Bonus problem: Figure 13.4 shows an iterative implementation of the quicksort algorithm,
and Figure 13.5 an accompanying test program. Shared variable testqs.arr keeps track of both
the array to be sorted and a todo list containing the ranges of the array that need to be sorted
(initially the entire array). Re-using as much of this code as you can, implement a parallel version of
this. You should not have to change the methods swap, partition, or sortrange for this. Create
NWORKERS “worker threads” that should replace the qsort code. Each worker loops until todo is
empty and sorts the ranges that it finds until then. The main thread needs to wait until all workers
are done.

13.5 Cornell’s campus features some one-lane bridges. On a one-lane bridge, cars can only go in one
direction at a time. Consider northbound and southbound cars wanting to cross a one-lane bridge.
The bridge allows arbitrary many cars, as long as they’re going in the same direction. Implement a
lock that observes this requirement. Write methods OLBlock() to create a new “one lane bridge”
lock, nb enter() that a car must invoke before going northbound on the bridge and nb leave()
that the car must invoke after leaving the bridge. Similarly write sb enter() and sb leave() for
southbound cars.

13.6 Extend the solution to Exercise 13.5 by implementing the requirement that at most n cars
are allowed on the bridge. Add n as an argument to OLBlock.

95

https://harmony.cs.cornell.edu/code/gpu.hny

1 def Qsort(arr) returns state:
2 state = { .arr : arr, .todo: { (0, len(arr) – 1) } }
3

4 def swap(p, q): # swap !p and !q
5 !p, !q = !q, !p
6

7 def partition(qs, lo, hi) returns pivot :
8 pivot = lo
9 for i in {lo..hi – 1}:

10 if qs→arr [i] <= qs→arr [hi]:
11 swap(?qs→arr [pivot], ?qs→arr [i])
12 pivot += 1
13 swap(?qs→arr [pivot], ?qs→arr [hi])
14

15 def sortrange(qs, range):
16 let lo, hi = range let pivot = partition(qs, lo, hi):
17 if (pivot – 1) > lo:
18 qs→todo |= { (lo, pivot – 1) }
19 if (pivot + 1) < hi :
20 qs→todo |= { (pivot + 1, hi) }
21

22 def sort(qs) returns sorted list :
23 while qs→todo != {}:
24 let range = choose(qs→todo):
25 qs→todo –= { range }
26 sortrange(qs, range)
27 sorted list = qs→arr

Figure 13.4: [code/qsort.hny] Iterative qsort() implementation

1 import qsort, bags
2

3 const NITEMS = 4
4

5 a = [choose({1..NITEMS}) for i in {1..choose({1..NITEMS})}]
6 testqs = qsort.Qsort(a)
7 sa = qsort.sort(?testqs)
8 assert all(sa[i – 1] <= sa[i] for i in {1..len(sa)–1}) # sorted?
9 assert bags.fromList(a) == bags.fromList(sa) # is it a permutation?

Figure 13.5: [code/qsorttest.hny] Test program for Figure 13.4

96

https://harmony.cs.cornell.edu/code/qsort.hny
https://harmony.cs.cornell.edu/code/qsorttest.hny

Chapter 14

Starvation

A property is a set of traces. If a program has a certain property, that means that the traces
that that program allows are a subset of the traces in the property. So far, we have pursued
two properties: mutual exclusion and progress. The former is an example of a safety property—
it prevents something “bad” from happening, like a reader and writer thread both acquiring a
reader/writer lock. The progress property is an example of a liveness property—guaranteeing that
something good eventually happens. Informally (and inexactly), progress states that if no threads
are in the critical section, then some thread that wants to enter can.

Progress says that some thread eventually can enter, but it does not prevent a scenario such
as the following in which some thread never is able to enter. There are three threads repeatedly
trying to enter a critical section using a spinlock. Two of the threads successfully keep entering,
alternating, but the third thread never gets a turn. This is an example of starvation. With a
spinlock, this scenario could even happen with two threads. Initially both threads try to acquire
the spinlock. One of the threads is successful and enters. After the thread leaves, it immediately
tries to re-enter. This state is identical to the initial state, and there is nothing that prevents the
same thread from acquiring the lock yet again.

Peterson’s Algorithm (Figure 5.6) does not suffer from starvation, thanks to the turn variable
that alternates between 0 and 1 when two threads are contending for the critical section. Ticket
locks (Figure 8.3) are also free from starvation.

While spinlocks suffer from starvation, it is a uniform random process and each thread has an
equal chance of entering the critical section. Thus the probability of starvation is exponentially
vanishing. We shall call such a solution fair (although it does not quite match the usual formal nor
vernacular concepts of fairness).

Unfortunately, such is not the case for the reader/writer solution that we presented in Fig-
ure 13.1. Consider this scenario: There are two readers and one writer. One reader is in the critical
section while the writer is waiting. Now the second reader tries to enter and is able to. The first
reader leaves. We are now in a similar situation as the initial state with one reader in the critical
section and the writer waiting, but it is not the same reader. Unfortunately for the writer, this

97

3 from synch import *
4

5 def RWlock() returns lock:
6 lock = {
7 .nreaders: 0, .nwriters: 0, .mutex : Lock(),
8 .r waiting : 0, .r cleared : 0, .w waiting : 0, .w cleared : 0,
9 .r cond : Condition(), .w cond : Condition()

10 }
11

12 def read acquire(rw):
13 acquire(?rw→mutex)
14 if (rw→nwriters == 0) and (rw→w waiting == 0):
15 assert rw→r waiting == 0
16 rw→nreaders += 1
17 else:
18 rw→r waiting += 1
19 while rw→r cleared == 0:
20 wait(?rw→r cond, ?rw→mutex)
21 rw→r cleared –= 1
22 assert rw→nreaders > 0
23 assert rw→nwriters == 0
24 release(?rw→mutex)
25

26 def read release(rw):
27 acquire(?rw→mutex)
28 assert rw→nreaders > 0
29 assert rw→nwriters == 0
30 rw→nreaders –= 1
31 if (rw→nreaders == 0) and (rw→w waiting > 0):
32 rw→w cleared = rw→nwriters = 1
33 rw→w waiting –= 1
34 notify(?rw→w cond)
35 release(?rw→mutex)

Figure 14.1: [code/rwlock cv fair.hny] Reader/Writer Lock implementation addressing fairness
(part 1)

98

https://harmony.cs.cornell.edu/code/rwlock_cv_fair.hny

39 def write acquire(rw):
40 acquire(?rw→mutex)
41 if (rw→nreaders == 0) and (rw→nwriters == 0):
42 assert rw→r waiting == rw→w waiting == 0
43 rw→nwriters = 1
44 else:
45 rw→w waiting += 1
46 while rw→w cleared == 0:
47 wait(?rw→w cond, ?rw→mutex)
48 rw→w cleared = 0
49 assert rw→nreaders == 0
50 assert rw→nwriters == 1
51 release(?rw→mutex)
52

53 def write release(rw):
54 acquire(?rw→mutex)
55 assert rw→nreaders == 0
56 assert rw→nwriters == 1
57 if rw→r waiting > 0:
58 rw→nwriters = 0
59 rw→r cleared = rw→nreaders = rw→r waiting
60 rw→r waiting = 0
61 notify all(?rw→r cond)
62 elif rw→w waiting > 0:
63 rw→w waiting –= 1
64 rw→w cleared = 1
65 notify(?rw→w cond)
66 else:
67 rw→nwriters = 0
68 release(?rw→mutex)

Figure 14.2: [code/rwlock cv fair.hny] Reader/Writer Lock implementation addressing fairness
(part 2)

99

https://harmony.cs.cornell.edu/code/rwlock_cv_fair.hny

scenario can repeat itself indefinitely. So, even if neither reader was in the critical section all of the
time, and the second reader arrived well after the writer, the writer never had a chance.

Figure 14.1 and Figure 14.2 present a fair implementation of a read/writer lock. When there is
contention between readers and writers, readers and writers end up alternating entering the critical
section. While readers can still starve other readers and writers can still starve other writers, readers
can no longer starve writers nor vice versa. Other fairness is based on the fairness of scheduling
the threads themselves.

Besides the number of readers and writers in the critical section, the implementation keeps track
of the number of readers and writers that are waiting to enter the critical section, and the number
of readers and writers that are cleared to enter the critical section.

Starting with read acquire in Figure 14.1, the thread first checks to see if there are no writers
in the critical section and there are no writers waiting to enter the critical section (Line 14). If so,
the thread can enter the critical section. Otherwise it waits until it is cleared to enter the critical
section. read release checks to see if the thread is the last one to leave the critical section and
there are writers waiting to enter. If so, it clears one of the writers.

write acquire in Figure 14.2 first checks to see that there are no other threads in the critical
section. If so, the thread enters the critical section. Otherwise, the thread waits until it is cleared
to enter. write release first checks to see if there are readers waiting to enter. If so, it clears all
the readers. If not, it checks to see if there are writers waiting to enter. If so, it clears one of the
writers.

Exercises

14.1 Write a fair solution to the one-lane bridge problem of Exercise 13.5.

100

Chapter 15

Deadlock

When multiple threads are synchronizing access to shared resources, they may end up in a
deadlock situation where one or more of the threads end up being blocked indefinitely because each
is waiting for another to give up a resource. The famous Dutch computer scientist Edsger W.
Dijkstra illustrated this using a scenario he called “Dining Philosophers.”

Imagine five philosopers sitting around a table, each with a plate of food in front of them and
a fork between every two plates. Each philosopher requires two forks to eat. To start eating, a
philosopher first picks up the fork on the left, then the fork on the right. Each philosopher likes to
take breaks from eating to think for a while. To do so, the philosopher puts down both forks. Each
philosopher repeats this procedure. Dijkstra had them repeating this for ever, but for the purposes
of this book, philosophers can—if they wish—leave the table when they are not using any forks.

Figure 15.1 implements the dining philosophers in Harmony, using a thread for each philosopher
and a lock for each fork. If you run it, Harmony complains that the execution may not be able to
terminate, with all five threads being blocked trying to acquire the lock.

� Do you see what the problem is?

� Does it depend on N, the number of philosophers?

There are four conditions that must hold for deadlock to occur, sometimes known as the Coffman
Conditions [CES71]:

1. Mutual Exclusion: each resource can only be used by one thread at a time;

2. Hold and Wait : each thread holds resources it already allocated while it waits for other
resources that it needs;

3. No Preemption: resources cannot be forcibly taken away from threads that allocated them;

4. Circular Wait : there exists a directed circular chain of threads, each waiting to allocate a
resource held by the next.

Preventing deadlock thus means preventing that one of these conditions occurs. However, mutual
exclusion is not easily prevented in general because many resources allow only one process to use
it at a time (although, for some resources it is possible, as demonstrated in Chapter 21). Havender
proposed the following techniques that avoid the remaining three conditions [Hav68]:

101

1 from synch import Lock, acquire, release
2

3 const N = 5
4

5 forks = [Lock(),] * N

6

7 def diner(which):
8 let left, right = (which, (which + 1) % N):
9 while choose({ False, True }):

10 acquire(?forks[left])
11 acquire(?forks[right])
12 # dine
13 release(?forks[left])
14 release(?forks[right])
15 # think
16

17 for i in {0..N–1}:
18 spawn diner(i)

Figure 15.1: [code/Diners.hny] Dining Philosophers

� No Hold and Wait : a thread must request all resources it is going to need at the same time;

� Preemption: if a thread is denied a request for a resource, it must release all resources that it
has already acquired and start over;

� No Circular Wait : define an ordering on all resources and allocate resources in a particular
order.

To implement a No Hold and Wait solution, a philosopher would need a way to lock both
the left and right forks at the same time. Locks do not have such an ability, so we re-implement
the Dining Philosophers using condition variables that allow one to wait for arbitrary application-
specific conditions.

Figure 15.2 demonstrates how this might be done. The implementation uses a boolean for each
fork indicating if the fork has been taken. It also uses a condition variable for each pair of forks,
or, equivalently, for each philosopher. Each philosopher that is about to eat waits on its condition
variable if either the left or right fork is already taken. When a philosopher is done eating, it notifies
both of its neighbors.

The Preemption approach suggested by Havender is to allow threads to back out. While this
could be done, this invariably leads to a busy waiting solution where a thread keeps obtaining locks
and releasing them again until it finally is able to get all of them.

The No Circular Waiting approach is to prevent a cycle from forming, with each thread waiting
for the next thread on the cycle. We can do this by establishing an ordering among the resources (in
this case the forks) and, when needing more than one resource, always acquiring them in order. In

102

https://harmony.cs.cornell.edu/code/Diners.hny

1 from synch import *
2

3 const N = 5
4

5 mutex = Lock()
6 forks = [False,] * N

7 conds = [Condition(),] * N

8

9 def diner(which):
10 let left, right = (which, (which + 1) % N):
11 while choose({ False, True }):
12 acquire(?mutex)
13 while forks[left] or forks[right]:
14 wait(?conds[which], ?mutex)
15 forks[left] = forks[right] = True
16 release(?mutex)
17 # dine
18 acquire(?mutex)
19 forks[left] = forks[right] = False
20 notify(?conds[(which – 1) % N])
21 notify(?conds[(which + 1) % N])
22 release(?mutex)
23 # think
24

25 for i in {0..N–1}:
26 spawn diner(i)

Figure 15.2: [code/DinersCV.hny] Dining Philosophers that grab both forks at the same time

103

https://harmony.cs.cornell.edu/code/DinersCV.hny

the case of the philosopers, they could prevent deadlock by always picking up the lower numbered
fork before the higher numbered fork, like so:

1 if left < right :
2 synch.acquire(?forks[left])
3 synch.acquire(?forks[right])
4 else:
5 synch.acquire(?forks[right])
6 synch.acquire(?forks[left])

or, equivalently, like so:

1 synch.acquire(?forks[min(left, right)])
2 synch.acquire(?forks[max(left, right)])

This completes all the Havender methods. There is, however, another approach, which is some-
times called deadlock avoidance instead of deadlock prevention. In the case of the Dining Philoso-
phers, we want to avoid the situation where each diner picks up a fork. If we can prevent more than
four diners from starting to eat at the same time, then we can avoid the conditions for deadlock
from ever happening. Figure 15.3 demonstrates this concept. It uses a counting semaphore to
restrict the number of diners at any time to four. A counting semaphore is a resource that can
be procured a given number of times. It is supported by the synch module. The P or “procure”
operation acquires a counting semaphore, blocking if too many threads have procured it already.
The V or “vacate” operation releases the semaphore.

This avoidance technique can be generalized using something called the Banker’s Algo-
rithm [Dij64], but it is outside the scope of this book. The problem with these kinds of schemes
is that one needs to know ahead of time the set of threads and what the maximum number of
resources is that each thread wants to allocate, making them usually impractical.

Exercises

15.1 Figure 15.4 shows an implementation of a bank with various accounts and transfers between
those accounts. Unfortunately, running the test reveals that it sometimes leaves unterminated
threads. Can you fix the problem?

15.2 Add a method total() to the solution of the previous question that computes the total over
all balances. It needs to obtain a lock on all accounts. Make sure that it cannot cause deadlock.

15.3 Add an invariant that checks that the total of the balances never changes. Note that this
predicate only holds if none of the locks are held. You can use the held(lk) method in the synch

module to check if a lock is held or not.

104

1 from synch import *
2

3 const N = 5
4

5 forks = [Lock(),] * N

6 sema = Semaphore(N – 1) # can be procured up to N−1 times
7

8 def diner(which):
9 let left, right = (which, (which + 1) % N):

10 while choose({ False, True }):
11 P(?sema) # procure counting semaphore
12 acquire(?forks[left])
13 acquire(?forks[right])
14 # dine
15 release(?forks[left])
16 release(?forks[right])
17 V(?sema) # vacate counting semaphore
18 # think
19

20 for i in {0..N–1}:
21 spawn diner(i)

Figure 15.3: [code/DinersAvoid.hny] Dining Philosophers solutions that avoids getting into a
deadlock by allowing at most N–1 philosophers to start eating at a time

105

https://harmony.cs.cornell.edu/code/DinersAvoid.hny

1 from synch import Lock, acquire, release
2

3 const MAX BALANCE = 2
4 const N ACCOUNTS = 2
5 const N THREADS = 2
6

7 accounts = [{ .lock : Lock(), .balance: choose({0..MAX BALANCE})}
8 for i in {1..N ACCOUNTS}]
9

10 def transfer(a1, a2, amount) returns success:
11 acquire(?accounts[a1].lock)
12 if amount <= accounts[a1].balance:
13 accounts[a1].balance –= amount
14 acquire(?accounts[a2].lock)
15 accounts[a2].balance += amount
16 release(?accounts[a2].lock)
17 success = True
18 else:
19 success = False
20 release(?accounts[a1].lock)
21

22 def thread():
23 let a1 = choose({0..N ACCOUNTS–1})
24 let a2 = choose({0..N ACCOUNTS–1} – { a1 }):
25 transfer(a1, a2, choose({1..MAX BALANCE}))
26

27 for i in {1..N THREADS}:
28 spawn thread()

Figure 15.4: [code/bank.hny] Bank accounts

106

https://harmony.cs.cornell.edu/code/bank.hny

Chapter 16

Actors and Message Passing

So far we have focused on using critical sections to achieve synchronization between threads
accessing shared data structures. Some programming languages favor a different way using so-
called actors [HBS73, Agh86]. Actors are threads that have only private memory and communicate
through message passing. See Figure 16.1 for an illustration. Given that there is no shared memory
in the actor model (other than the message queues, which have built-in synchronization), there
is no need for critical sections. Instead, some sequential thread owns a particular piece of data
and other threads access it by sending request messages to the thread and optionally waiting for
response messages. Each thread handles one message at a time, serializing all access to the data it
owns. As message queues are FIFO (First-In-First-Out), starvation is prevented as well.

The actor synchronization model is popular in a variety of programming languages, including
Erlang and Scala. Actor support is also available through popular libraries such as Akka, which is
available for various programming languages. In Python, Java, and C/C++, actors can be easily
emulated using threads and synchronized queues (a.k.a. blocking queues) for messaging. Each
thread would have one such queue for receiving messages. Dequeuing from an empty synchronized
queue blocks the thread until another thread enqueues a message on the queue.

The synch library supports a synchronized message queue, similar to the Queue object in Python.
Its interface is as follows:

� Queue() returns an empty queue;

Figure 16.1: Depiction of three actors. The producer does not receive messages.

107

1 import synch

2

3 const NCLIENTS = 3
4

5 server queue = synch.Queue()
6

7 def server():
8 var counter = 0
9 while True:

10 let q = synch.get(?server queue): # await request
11 synch.put(q, counter) # send response
12 counter += 1
13

14 def client(client queue):
15 synch.put(?server queue, client queue) # send request
16 let response = synch.get(client queue): # await response
17 print(response)
18

19 spawn eternal server()
20

21 alice queue = synch.Queue()
22 spawn client(?alice queue)
23 bob queue = synch.Queue()
24 spawn client(?bob queue)
25 charlie queue = synch.Queue()
26 spawn client(?charlie queue)

Figure 16.2: [code/counter.hny] An illustration of the actor approach

108

https://harmony.cs.cornell.edu/code/counter.hny

� put(q, item) adds item to the queue pointed to by q ;

� get(q) waits for and returns an item on the queue pointed to by q.

For those familiar with counting semaphores: Note that a Queue behaves much like a zero-
initialized counting semaphore. put is much like V, except that it is accompanied by data. get

is much like P, except that it also returns data. Thus, synchronized queues can be considered a
generalization of counting semaphores.

Figure 16.2 illustrates the actor approach. There are three client threads that each want to be
assigned a unique identifier from the set { 0, 1, 2 }. Normally one would use a shared 0-initialized
counter and a lock. Each client would acquire the lock, get the value of the counter and increment
it, and release the lock. Instead, in the actor approach the counter is managed by a separate
server thread. The server never terminates, so it is spawned with the keyword eternal to suppress
non-terminating state warnings. Each client sends a request to the server, consisting in this case
of simply the queue to which the server must send the response. The server maintains a local,
zero-initialized counter variable. Upon receiving a request, it returns a response with the value of
the counter and increments the counter. No lock is required.

This illustration is an example of the client/server model. Here a single actor implements some
service, and clients send request messages and receive response messages. The model is particularly
popular in distributed systems, where each actor runs on a separate machine and the queues are
message channels. For example, the server can be a web server, and its clients are web browsers.

Exercises

16.1 Actors and message queues are good for building pipelines. Develop a pipeline that computes
Mersenne primes (primes that are one less than a power of two). Write four actors:

1. an actor that generates a sequence of integers 1 through N;

2. an actor that receives integers and forwards only those that are prime;

3. an actor that receives integers and forwards only those that are one less than a power of two;

4. an actor that receives integers but otherwise ignores them.

Configure two versions of the pipeline, one that first checks if a number is prime and then if it is
one less than a power of two, the other in the opposite order. Which do you think is better?

109

Chapter 17

Barrier Synchronization

Barrier synchronization is a technique that comes up in high-performance parallel computing.
The Harmony model checker uses it internally to synchronize its worker threads. A barrier is almost
the opposite of a critical section: The intention is to get a group of threads to run some code at the
same time, instead of having them execute it one at a time. More precisely, when there is a barrier
in concurrent code, all threads must complete the work before the barrier before they can start the
work after the barrier. Therefore, threads that reach the barrier must wait until all threads reached
the barrier.

Like locks, barriers can be re-used. Threads may execute in rounds, and between each round
threads wait at the barrier until all threads have completed the previous round. For example, in an
iterative matrix algorithm, the matrix may be cut up into fragments. During a round, the threads
run concurrently, one for each fragment. The next round is not allowed to start until all threads
have completed processing their fragment.

The interface to a barrier is as follows:

� b = Barrier(n): initialize a barrier b for a collection of n threads;

� bwait(?b): wait until all threads have reached the barrier.

Figure 17.1 demonstrates the use of barriers in a parallel dot product computation. In this
example, there are two vectors vec1 and vec2 that need to be multiplied. Because the vectors
may be very large, they are split among NWORKERS threads, each computing a partial sum. After
reaching the barrier, they know that each worker is done and print the sum. To see why the barrier
is needed, you can comment out Line 19 and run it through harmony.

Before we show how one might specify and implement a barrier in Harmony, we present a test
program for barriers in Figure 17.2. The work that a thread Ti does before the barrier is captured
in the counter before[i], while the work that a thread does after the barrier is captured in counter
after [i]. If the barrier works correctly, then it must be the case that a worker cannot increment
after [i] in a round until all workers have incremented before[i]. Therefore the following invariant
must hold: max(before) ≥ min(after).

How can one specify a barrier? A complication here is that the interface (similar to interfaces
from mainstream programming languages) does not identify which thread invokes bwait(), nor how
many times the thread has invoked bwait(). For example, one might be tempted to specify the

110

1 import barrier

2

3 const NWORKERS = 2
4

5 vec1 = [1, 2, 3, 4]
6 vec2 = [5, 6, 7, 8]
7 barr = barrier.Barrier(NWORKERS)
8 output = [0,] * NWORKERS

9

10 def split(self, v) returns x :
11 x = (self * len(v)) / NWORKERS

12

13 def dotproduct(self, v1, v2):
14 assert len(v1) == len(v2)
15 var total = 0
16 for i in { split(self, v1) .. split(self + 1, v1) – 1}:
17 total += v1 [i] * v2 [i]
18 output [self] = total
19 barrier.bwait(?barr)
20 print sum(output)
21

22 for i in { 0 .. NWORKERS – 1 }:
23 spawn dotproduct(i, vec1, vec2)

Figure 17.1: [code/barrier demo.hny] Parallel dot product using barrier implementation

111

https://harmony.cs.cornell.edu/code/barrier_demo.hny

1 import barrier

2

3 const NTHREADS = 3
4 const NROUNDS = 4
5

6 barr = barrier.Barrier(NTHREADS)
7 before = after = [0,] * NTHREADS

8

9 invariant min(before) >= max(after)
10

11 def thread(self):
12 for in { 1 .. NROUNDS }:
13 before[self] += 1
14 barrier.bwait(?barr)
15 after [self] += 1
16

17 for i in { 0 .. NTHREADS – 1 }:
18 spawn thread(i)

Figure 17.2: [code/barrier test.hny] Testing the barrier synchronization interface

1 def Barrier(required) returns barrier:
2 barrier = { .required : required, .n: 0 }
3

4 def bwait(b):
5 atomically b→n += 1
6 atomically await b→n == b→required

Figure 17.3: [code/barrier once.hny] A single-use barrier specification

112

https://harmony.cs.cornell.edu/code/barrier_test.hny
https://harmony.cs.cornell.edu/code/barrier_once.hny

1 def Barrier(required) returns barrier:
2 barrier = { .required : required, .n: 0 }
3

4 def bwait(b):
5 atomically:
6 b→n += 1
7 if b→n == b→required :
8 b→n = 0
9 atomically await b→n == 0

Figure 17.4: [code/barrier broken.hny] An incorrect barrier specification

1 def Barrier(required) returns barrier:
2 barrier = { .required : required, .n: [0, 0] }
3

4 def turnstile(b, i):
5 atomically:
6 b→n[i] += 1
7 if b→n[i] == b→required :
8 b→n[1 – i] = 0
9 atomically await b→n[i] == b→required

10

11 def bwait(b):
12 turnstile(b, 0)
13 turnstile(b, 1)

Figure 17.5: [code/barrier double.hny] Barrier specification using the double turnstile approach

barrier as in Figure 17.3. It is implemented as a turnstile that lets one thread through into a waiting
area until a certain number required is reached (which is set to the number of threads). At that
time that threads in the waiting area are released. The number of threads that have passed the
turnstile is maintained in n.

Clearly, we have to have a way to reset n, but which thread should be responsible for it? One
option is to let the last thread that reaches the barrier do it. Figure 17.4 illustrates this. Before
you read on, can you see what the problem is?

The barrier implementation is correct for single use, and all threads wait until the last thread
has reached the barrier. However, now suppose one of those threads goes on and gets back to
bwait() for the next round. The thread will find that n = 0 and will increment n to 1. The thread
then starts waiting until n = required. However, so will all other threads, because n is no longer 0.
The crux of the problem is that the barrier state cannot distinguish between the threads that are
waiting for the other threads to arrive and the threads that have been cleared to leave.

113

https://harmony.cs.cornell.edu/code/barrier_broken.hny
https://harmony.cs.cornell.edu/code/barrier_double.hny

1 def Barrier(required) returns barrier:
2 barrier = { .required : required, .n: 0, .color : 0 }
3

4 def bwait(b):
5 var color = None
6 atomically:
7 color = b→color
8 b→n += 1
9 if b→n == b→required :

10 b→color ˆ= 1
11 b→n = 0
12 atomically await b→color != color

Figure 17.6: [code/barrier.hny] Barrier specification

This insight inspires the solution in Figure 17.5, which is sometimes called the double turnstile
approach. Each turnstile is as before: It counts the number of threads that have arrived at the
turnstile. We shall call the turnstiles red (0) and green (1). The threads first go through the red
turnstile and wait there for the last thread. The last thread to arrive resets the green turnstile’s
counter to 0, knowing that there cannot be any threads waiting at the green turnstile. The threads
can then move on to the green turnstile. Again they wait for one another, and the last thread to
arrive there resets the red turnstile.

If we were to implement a barrier this way, threads would have to wait twice, which is a potential
inefficiency. Fortunately, there is a trick we can use to avoid this. Instead of using a red and a green
turnstile, we will use a single turnstile, but have the last thread that gets to the turnstile change
its color.

Figure 17.6 shows how this is done. As before a counter n counts how many threads still have
to reach the barrier. The barries also uses a variable .color that is flipped between 0 and 1 after
each use of the barrier. The last thread that reaches the barrier restores n to 0 and flips the color
(using the exclusive or operation: ˆ). The other threads are waiting for the turnstile to change
colors. Turning the specification of Figure 17.6 into an implementation is now straightforward, as
shown in Figure 17.7 using condition variables.

Figure 17.8 shows an implementation of a parallel sorting algorithm based on bubblesort. The
threads (one for every two elements) go through three phases. In the first phase, the threads swap
entries 0 and 1, 2 and 3, ... as needed. In the second phase, they swap entries 1 and 2, 3 and 4, ...
as needed. Finally, they check if any elements were swapped. If so, they repeat the phases.

114

https://harmony.cs.cornell.edu/code/barrier.hny

1 from synch import *
2

3 def Barrier(required) returns barrier:
4 barrier = {
5 .mutex : Lock(), .cond : Condition(),
6 .required : required, .n: 0, .color : 0
7 }
8

9 def bwait(b):
10 acquire(?b→mutex)
11 b→n += 1
12 if b→n == b→required :
13 b→color ˆ= 1
14 b→n = 0
15 notify all(?b→cond)
16 else:
17 let color = b→color :
18 while b→color == color :
19 wait(?b→cond, ?b→mutex)
20 release(?b→mutex)

Figure 17.7: [code/barrier cv.hny] Barrier implementation

115

https://harmony.cs.cornell.edu/code/barrier_cv.hny

1 from barrier import *
2

3 const N = 5 # size of list to be sorted
4

5 thelist = [choose { 1 .. N } for i in { 1 .. N }]
6

7 finally all(thelist [i–1] <= thelist [i] for i in { 1 .. N – 1 })
8

9 const NTHREADS = N / 2
10 bar = Barrier(NTHREADS)
11 count = [0,] * NTHREADS # to detect termination
12

13 def sorter(self, i):
14 var unsorted = True
15 while unsorted :
16 let old count = count :
17 bwait(?bar) # wait until all have assigned old count
18

19 # Even phase
20 if thelist [i – 1] > thelist [i]:
21 thelist [i – 1], thelist [i] = thelist [i], thelist [i – 1]
22 count [self] += 1
23

24 bwait(?bar) # wait until all have finished even phase
25

26 # Odd phase
27 if i < N – 1 and thelist [i] > thelist [i + 1]:
28 thelist [i], thelist [i + 1] = thelist [i + 1], thelist [i]
29 count [self] += 1
30

31 bwait(?bar) # wait until all have finished odd phase
32

33 # Sorted iff nobody swapped anything
34 unsorted = count != old count
35

36 for k in { 0 .. NTHREADS – 1}:
37 spawn sorter(k, 2*k + 1)

Figure 17.8: [code/bsort.hny] Parallel bubble sort

116

https://harmony.cs.cornell.edu/code/bsort.hny

Chapter 18

Advanced Barrier Synchronization

In the previous chapter, we presented barrier synchronization for the case where the number of
threads is exactly the number of threads that the barrier is waiting for. However, we may have
a resource that can be used simultaneously by some maximum number of threads, but there are
more threads than the maximum that would like to use the resource. Consider, for example, the
following example taken from an exam:

Given is a roller coaster with a single car. Safety precautions require the following:
Each ride requires that all seats are filled. That is, partially filled cars are not allowed
to ride. After a ride, the car must completely empty out before new riders are allowed
to enter the car. Write code to model this.

In such problems there is a shared resource (in this case the car) that is used repeatedly in what
we shall call rounds. In each round, the resource usually has to be used to capacity. The users
(the riders in this case) can be modeled by threads. It is often useful to think of these problems as
having a section that threads must enter and exit, much like a critical section. In this case, entering
the section means going for a ride, and exiting the section means being done with the ride.

Entering a section consists of two phases. A thread should first wait until any threads that
already entered the section have exited. Then, it should wait until conditions are met, in this case
until there are enough users (threads) to fill up the car. Not following this recipe might lead to the
following problem: As the car is emptying out, new riders may try to enter the car because it is no
longer full.

In the first phase, a thread needs to be able to detect that all threads that have entered previously
have now left. In the second phase, a thread should check to see if it is the last thread to enter the
second phase. If not, it should wait. If so, it should notify the ones that are waiting. When leaving
the section, a thread should check if it is the last thread to leave. If so, it should notify the threads
that are waiting in the first phase.

Figure 18.1 presents a solution. Method RollerCoaster(nseats) returns the initial state of a
roller coaster with nseats seats to a car. Method enter(b) takes a pointer b to a roller coaster
variable. Following the recipe sketched above, a thread that calls enter(b) blocks until

1. all previous riders have left the car, and

2. the car has filled up again.

117

1 from synch import *
2

3 def RollerCoaster(nseats): result = {
4 .mutex : Lock(), .nseats: nseats, .entered : 0, .left : nseats,
5 .empty : Condition(), .full : Condition()
6 }
7

8 def enter(b):
9 acquire(?b→mutex)

10 while b→entered == b→nseats: # wait for car to empty out
11 wait(?b→empty, ?b→mutex)
12 b→entered += 1
13 if b→entered != b→nseats: # wait for car to fill up
14 while b→entered < b→nseats:
15 wait(?b→full, ?b→mutex)
16 else: # car is ready to go
17 b→left = 0
18 notify all(?b→full) # wake up others waiting in car
19 release(?b→mutex)
20

21 def exit(b):
22 acquire(?b→mutex)
23 b→left += 1
24 if b→left == b→nseats: # car is empty
25 b→entered = 0
26 notify all(?b→empty) # wake up riders wanting to go
27 release(?b→mutex)

Figure 18.1: [code/rollercoaster.hny] Modeling a roller coaster

118

https://harmony.cs.cornell.edu/code/rollercoaster.hny

After “doing the ride,” the thread must call method exit(b).
An important part of solving the problem is figuring out what state must be kept about the

resource. The code keeps track of the number of threads that have entered the car (including the
threads that have not yet entered the section and the threads that have left the section) and the
number of threads that have left the section. The first number is only reset after that last thread
has left the section. The second number is reset after the last thread has entered the car.

In this example exam question there was just a single instance of a resource, and all users were
in some sense the same in that they are interchangeable. In the problem set below we include a
problem in which there are multiple resources and a problem in which not all users are the same.
Nonetheless, a similar approach can be used as illustrated above.

Exercises

18.1 Imagine a pool hall with a certain number of tables. A table is full from the time there are
two players until both players have left. When someone arrives, they can join a table that is not
full, preferably one that has a player ready to start playing. Implement a simulation of this.

18.2 The following is a classical problem. There is a ferry that is used by both Linux hackers
and Microsoft employees (serfs) to cross a river. The ferry can hold exactly four people; it won’t
leave the shore with more or fewer. To guarantee the safety of the passengers, it is not permissible
to put one hacker in the boat with three serfs, or to put one serf with three hackers. Any other
combination is safe. Implement a simulation of this.

119

Chapter 19

Example: A Concurrent File
Service

This chapter presents a concurrent file service to illustrate many of the techniques we have discussed
inside a single example. We will cover the specification of such a service as well as that of a disk, and
show how the specification can be implemented on top of the disk. The file service implementation
will use a collection of worker threads synchronizing using both ordinary locks and reader/writer
locks. Clients of the file service implementation (threads themselves) use blocking synchronized
queues to communicate with the workers. The example will also illustrate modular model checking,
as the disk, the locks, and the queues are only specified.

In practice, there are many aspects to a file system. We will focus here on a low-level notion
of a file, where the file abstraction is identified by a number (the so-called “inode number” or ino)
and consists of a sequence of fixed-sized blocks. In our abstraction, each block holds an arbitrary
Harmony value. If you want to remain more truthful to reality, you might only store lists of numbers
of fixed length in a block, representing a block of bytes. A more complete file system would keep
track of various additional information about each file, such as its size in bytes, its owner, its access
rights, and when the file was last modified. Moreover, a system of folders (a.k.a. directories)
built on top of the files would associate user-readable names to the files. Such abstractions can be
modularly implemented on top.

Figure 19.1 shows the file system interface. Just like in Unix-like file systems, you have to specify
the (maximum) number of files when you initialize the file system. File(n) returns a handle that
must be passed to file operations, where n is the maximum number of files. For our example, we
have only included three operations on files. read(fs, ino, offset) returns the block of file ino at the
given offset, or None if nothing has been stored at that offset. write(fs, ino, offset, data) stores
data at the given offset in file ino. If needed, the file is grown to include the given offset. “Holes”
(unwritten blocks) are plugged with None values. delete(fs, ino) deletes a file.

Figure 19.2 shows how the file system may be tested and illustrates how the file system interface
is used. As shown in Chapter 10, we can test a concurrent system by checking all interleavings
of some selection of its operations. We can do this for both the specification and implementation
of the file system and check that every behavior of the implementation is also a behavior of the
specification.

120

1 from alloc import malloc

2

3 def File(n files) returns fs:
4 fs = malloc([[],] * n files)
5

6 def read(fs, ino, offset) returns result :
7 atomically result = (!fs)[ino][offset] if 0 <= offset < len (!fs)[ino] else None
8

9 def write(fs, ino, offset, data) returns result :
10 atomically:
11 let n = len (!fs)[ino]:
12 if 0 <= offset <= n:
13 (!fs)[ino][offset] = data
14 else:
15 (!fs)[ino] += ([None,] * (offset – n)) + [data,]
16 result = "ok"
17

18 def delete(fs, ino) returns result :
19 atomically:
20 (!fs)[ino] = []
21 result = "ok"

Figure 19.1: [code/file.hny] Specification of the file system

121

https://harmony.cs.cornell.edu/code/file.hny

1 from file import *
2

3 const N FILES = 2
4 const MAX FILE SIZE = 2
5

6 const N READ = 1
7 const N WRITE = 1
8 const N DELETE = 1
9

10 system = File(N FILES)
11

12 def read test(i):
13 let ino = choose { 0 .. N FILES – 1 }
14 let offset = choose { 0 .. MAX FILE SIZE – 1 }:
15 print(i, "read", ino, offset)
16 let data = read(system, ino, offset):
17 print(i, "read done", ino, offset, data)
18

19 def write test(i):
20 let ino = choose { 0 .. N FILES – 1 }
21 let offset = choose { 0 .. MAX FILE SIZE – 1 }:
22 print(i, "write", ino, offset)
23 write(system, ino, offset, i)
24 print(i, "write done", ino, offset)
25

26 def delete test(i):
27 let ino = choose { 0 .. N FILES – 1 }:
28 print(i, "delete", ino)
29 delete(system, ino)
30 print(i, "delete done", ino)
31

32 for i in { 1 .. N READ }:
33 spawn read test(i)
34 for i in { 1 .. N WRITE }:
35 spawn write test(i)
36 for i in { 1 .. N DELETE }:
37 spawn delete test(i)

Figure 19.2: [code/file btest.hny] Test program for a concurrent file system

122

https://harmony.cs.cornell.edu/code/file_btest.hny

1 from alloc import malloc

2

3 def new(n blocks) returns disk:
4 disk = malloc([None,] * n blocks)
5

6 def getsize(disk) returns size:
7 size = len !disk
8

9 def read(disk, bno) returns contents:
10 contents = (!disk)[bno]
11

12 def write(disk, bno, block):
13 (!disk)[bno] = block

Figure 19.3: [code/disk.hny] Specification of a disk

To store the file system, we will use a disk. Like a file, a disk is an array of blocks, albeit one
of fixed length. Figure 19.3 specifies a disk. The interface is similar to that of files, except that
there are no inode numbers. Each block is identified by its offset or block number. For example,
disk read(disk, bno) retrieves the value of block bno on the given disk. Note that operations are not
atomic. For example, two threads concurrently writing the same block can result in chaos. It is up
to the file system implementation that this does not happen. Of course, more than one thread can
read the same block at the same time. This is only a specification of a disk—an implementation may
want to include a cache of blocks for good performance. Certain operations may also be re-ordered
to further improve performance.

For the implementation, we will use a simplified Unix file system. In a Unix file system, the
disk is subdivided into three parts (Figure 19.4(a)):

1. The superblock, at offset 0.

2. An array of fixed-sized inodes, stored in a range of m disk blocks starting at block 1. An
inode number indexes into this array. Each inode maintains some information about a file,
including the size and where to find the data.

3. The remaining blocks, starting at offset 1 +m, which will either store data, metadata, or are
free. Metadata blocks contain a list of block numbers.

The superblock specifies the number of inode blocks and the start of a linked list of free blocks.
In this simplified file system, each inode contains just three pieces of information about the file

(Figure 19.4(b)): the size of the file in blocks, the block number of the first data block, and the
block number of an indirect block—a metadata block that contains block numbers of additional
data blocks. Any block number may be None to indicate a hole in the file (unused blocks). Note
that a Unix file is essentially implemented as a tree of blocks.

Free blocks are maintained in a simple linked list. The superblock contains the block number
of the first free block, which every block on the free list contains the block number of the next free

123

https://harmony.cs.cornell.edu/code/disk.hny

Figure 19.4: The file system data structure: (a) disk layout (1 superblock, n blocks, m inode blocks,
4 inodes per block); (b) inode for a file with 3 data blocks

block, or None for the end of the list. (In a more realistic Unix file system, each block on the free
list would maintain pointers to additional free blocks.)

Note that the entire file system data structure is essentially a tree of blocks, with the superblock
acting as the root of the tree. The superblock points to the free list and the inode blocks. The
inode blocks point to the blocks that are allocated. An invariant of the data structure is that all
blocks are in the tree and each block (except for the superblock) is pointed to exactly once. The
invariant may not hold while the data structure is being updated. For example, temporarily a block
may be both on the free list but also be part of an inode, or a block may not be referenced at all.

Figure 19.5 shows the modules that the file system implementation will use and some constants.
The implementation uses the actor model (Chapter 16)—the synch module provides blocking multi-
reader/multi-writer queues that the actors will use for messaging. The file server itself is imple-
mented as a multithreaded actor. The threads synchronize using a plain lock for the free list and
reader/writer locks for each of the inode blocks. N BLOCKS specifies the size of the disk to be used
in blocks. INODES PER BLOCK specifies how many inodes fit in an inode block. INDIR PER BLOCK

specifies how many block numbers fit in a metadata block. Note that the maximum file size is this
simplified file system is 1 + INDIR PER BLOCK blocks. In a more realistic Unix file system, indirect
blocks can point to other indirect blocks, allowing for much larger files. N WORKERS specifies the
number of worker threads or actors.

Figure 19.6 shows the implementation of the file system interface, which is the same interface
as the specification (Figure 19.1) but a different implementation. File(), instead of returning an
object containing an array of files, returns an object containing a queue to communicate with the file
system worker threads. The first argument is the maximum number of files. The number of inode
blocks can be computed from the number of files by dividing by INODES PER BLOCK and rounding
up. The function also initializes a disk object using fs init and then allocates some shared state
to be used by the worker threads. The shared state includes the following information:

� .disk : points to the disk object;

� .req q : the shared queue on which requests from clients arrive;

124

12 from synch import * # shared queue for file server and lock for superblock
13 from rwlock import * # read/write locks for inode blocks
14 from alloc import * # malloc/free
15 from lists import subseq # list slicing
16 import disk # reading and writing blocks
17

18 const N BLOCKS = 10 # total number of disk blocks
19 const INODES PER BLOCK = 2 # number of inodes that fit in a block
20 const INDIR PER BLOCK = 4 # number of block pointers per block

Figure 19.5: [code/file inode.hny] File system implementation preamble

� .free lock : a lock on the free list;

� .ib locks: an array of reader/writer locks, one for each inode block.

Finally, File() spawns the fs worker() threads that will handle requests.
The remaining interfaces simply put a request on the request queue and wait for a response

on another queue res q that is allocated just for this purpose. Note that the request queue has
concurrent producers (the clients) and concurrent consumers (the worker threads). The response
queues are single use only and have a single producer (a worker thread) and a single consumer (the
client).

Each worker thread (Figure 19.7) executes an infinite loop, obtaining client requests and handling
them. Each request is for a particular inode. The worker first determines which inode block needs
to be locked. Depending on the request, it obtains either a read lock or a write lock on the block. In
practice, files are read much more frequently than written, so reader/writer locks can significantly
improve the potential for concurrent access compared to regular locks. The requests themselves are
handled in the fs query request() and fs update request() methods, which we will describe below.

Figure 19.8 shows how the disk is initialized with a fresh file system. The superblock is first
initialized with the number of inode blocks and a linked list of free blocks. Next, the inode blocks
are initialized, each with an empty file.

Figure 19.9 contains the code for allocating and freeing blocks. The methods first acquire the
free list lock and then do simple linked list operations. Block allocation can be made much more
efficient if each worker thread maintained a small cache of free blocks that it can allocate from
without having to coordinate with the other workers.

Figure 19.10 shows the code for read-only operations on files, which is currently only reading
a block from a file. The method first needs to read the block that contains the inode. Argu-
ment ib contains the inode block number, which is computed by dividing the inode number by
INODES PER BLOCK and adding 1 (because the first inode block is block 1). To get the index of the
inode in the block, you need to compute the remainder of that division. Handling of a read request
depends on the offset. If the offset is 0, then the request tries to access the data that is in the direct
block. Otherwise, it is necessary to read the indirect block first. In any block number is None
along the way, the response should be None.

125

https://harmony.cs.cornell.edu/code/file_inode.hny

168 def File(n files) returns req q :
169 req q = malloc(Queue())
170 let n inode blocks = (n files + (INODES PER BLOCK – 1)) / INODES PER BLOCK

171 let n workers = 2
172 let d = disk.new(N BLOCKS):
173 # Initialize the file system on disk
174 fs init(d, n inode blocks)
175

176 # Allocate the in−memory shared state of the file server
177 let fs state = malloc({ .next : None,
178 .disk : d, .req q : req q, .free lock : Lock(),
179 .n inode blocks: n inode blocks,
180 .ib locks: [RWlock(),] * n inode blocks }):
181

182 # Start worker threads to handle client requests
183 for i in { 1 .. n workers }:
184 spawn eternal fs worker(fs state, i)
185

186 def read(req q, ino, offset) returns result :
187 let res q = malloc(Queue()):
188 put(req q, { .type: "read", .ino: ino, .offset : offset, .q : res q })
189 result = get(res q)
190 free(res q)
191

192 def write(req q, ino, offset, data) returns result :
193 let res q = malloc(Queue()):
194 put(req q, { .type: "write", .ino: ino, .offset : offset, .data: data, .q : res q })
195 result = get(res q)
196 free(res q)
197

198 def delete(req q, ino) returns result :
199 let res q = malloc(Queue()):
200 put(req q, { .type: "delete", .ino: ino, .q : res q })
201 result = get(res q)
202 free(res q)

Figure 19.6: [code/file inode.hny] File system interface implementation

126

https://harmony.cs.cornell.edu/code/file_inode.hny

148 # A worker thread handles client requests
149 def fs worker(fs state init, id):
150 var fs state = fs state init
151 while True:
152 let req = get(fs state→req q)
153 let ib = req.ino / INODES PER BLOCK:
154 if req.type in { "write", "delete" }:
155 write acquire(?fs state→ib locks[ib])
156 fs update request(fs state, id, req, ib)
157 write release(?fs state→ib locks[ib])
158 put(req.q, "ok")
159 else:
160 assert req.type == "read"
161 read acquire(?fs state→ib locks[ib])
162 let response = fs read request(fs state, req, ib):
163 read release(?fs state→ib locks[ib])
164 put(req.q, response)

Figure 19.7: [code/file inode.hny] File server and worker threads

24 # Initialize the file system by writing the superblock, the free list, and
25 # the i−node blocks,
26 def fs init(d, n inode blocks):
27 # Initialize the i−node blocks
28 for i in { 1 .. n inode blocks }:
29 disk.write(d, i, [{ .direct : None, .indir : None, .size: 0 },] * INODES PER BLOCK)
30

31 # Free the data blocks
32 var free list = None
33 for i in { n inode blocks + 1 .. N BLOCKS – 1 }:
34 disk.write(d, i, free list)
35 free list = i
36

37 # Write the superblock
38 disk.write(d, 0, { .n inode blocks: n inode blocks, .free list : free list })

Figure 19.8: [code/file inode.hny] File system initialization

127

https://harmony.cs.cornell.edu/code/file_inode.hny
https://harmony.cs.cornell.edu/code/file_inode.hny

42 # Write to the disk
43 def do write(fs state, bno, block):
44 disk.write(fs state→disk, bno, block)
45

46 # Allocate a disk block.
47 def fs alloc(fs state) returns bno:
48 acquire(?fs state→free lock)
49 var super = disk.read(fs state→disk, 0)
50 bno = super.free list
51 if bno != None:
52 super.free list = disk.read(fs state→disk, bno)
53 do write(fs state, 0, super)
54 release(?fs state→free lock)
55

56 # Free block bno.
57 def fs free(fs state, bno):
58 acquire(?fs state→free lock)
59 var super = disk.read(fs state→disk, 0)
60 do write(fs state, bno, super.free list)
61 super.free list = bno
62 do write(fs state, 0, super)
63 release(?fs state→free lock)
64

65 # Read inode ino in block ib.
66 def fs get inode(fs state, ib, ino) returns inode:
67 let inode block = disk.read(fs state→disk, 1 + ib):
68 inode = inode block [ino % INODES PER BLOCK]
69

70 # Write inode ino in block ib.
71 def fs put inode(fs state, ib, ino, inode):
72 var inode block = disk.read(fs state→disk, 1 + ib)
73 inode block [ino % INODES PER BLOCK] = inode
74 do write(fs state, 1 + ib, inode block)

Figure 19.9: [code/file inode.hny] File system utility functions

128

https://harmony.cs.cornell.edu/code/file_inode.hny

78 # Handle a read request. A read lock on i−node block ib has been acquired.
79 def fs read request(fs state, req, ib) returns result :
80 # Read the inode block and extract the inode
81 let inode = fs get inode(fs state, ib, req.ino):
82 # Read the direct block. Return None if there is no direct block.
83 if req.offset == 0:
84 if inode.direct == None:
85 result = None
86 else:
87 result = disk.read(fs state→disk, inode.direct)
88

89 # Read indirectly. If there is no indirect block return None
90 elif inode.indir == None:
91 result = None
92

93 # Read the indirect block and get the pointer to the data block,
94 # which may be None.
95 else:
96 let indir = disk.read(fs state→disk, inode.indir):
97 if indir [req.offset – 1] == None:
98 result = None
99 else:

100 result = disk.read(fs state→disk, indir [req.offset – 1])

Figure 19.10: [code/file inode.hny] Handling of file read requests

129

https://harmony.cs.cornell.edu/code/file_inode.hny

104 # Handle an update request. A write lock on i−node block ib has been acquired.
105 def fs update request(fs state, id, req, ib):
106 var inode = fs get inode(fs state, ib, req.ino)
107 if req.type == "write":
108 if req.offset == 0:
109 if inode.direct == None:
110 inode.direct = fs alloc(fs state)
111 inode.size = max(inode.size, 1)
112 fs put inode(fs state, ib, req.ino, inode)
113 do write(fs state, inode.direct, req.data)
114 else:
115 if inode.indir == None:
116 inode.indir = fs alloc(fs state)
117 inode.size = max(inode.size, req.offset + 1)
118 fs put inode(fs state, ib, req.ino, inode)
119 let bno = fs alloc(fs state)
120 let indir = [bno if i == (req.offset – 1) else None
121 for i in { 0 .. INDIR PER BLOCK – 1 }]:
122 do write(fs state, bno, req.data)
123 do write(fs state, inode.indir, indir)
124 else:
125 var indir = disk.read(fs state→disk, inode.indir)
126 if indir [req.offset – 1] == None:
127 indir [req.offset – 1] = fs alloc(fs state)
128 do write(fs state, inode.indir, indir)
129 do write(fs state, indir [req.offset – 1], req.data)
130 if inode.size <= req.offset :
131 inode.size = req.offset + 1
132 fs put inode(fs state, ib, req.ino, inode)
133 else:
134 assert req.type == "delete"
135 if inode.direct != None:
136 fs free(fs state, inode.direct)
137 if inode.indir != None:
138 let indir = disk.read(fs state→disk, inode.indir):
139 for bno in indir :
140 if bno != None:
141 fs free(fs state, bno)
142 inode.direct = inode.indir = None
143 inode.size = 0
144 fs put inode(fs state, ib, req.ino, inode)

Figure 19.11: [code/file inode.hny] Handling of file write and delete requests

130

https://harmony.cs.cornell.edu/code/file_inode.hny

Finally, Figure 19.11 contains the code to write to a file or to delete a file. The write operation
first checks if the direct block is updated or a block accessible through an indirect block. If it is
the direct block, the code checks to see if the block has already been allocated. Otherwise it needs
to check if the indirect block has already been allocated as well as the data block. Data blocks,
indirect blocks, and even the inode block may all have to be updated as part of this operation.
Deleting a file puts all its blocks back on the free list and clears the inode.

131

Chapter 20

Interrupts

Threads can be interrupted. An interrupt is a notification of some event such as a keystroke, a
timer expiring, the reception of a network packet, the completion of a disk operation, and so on.
We distinguish interrupts and exceptions. An exception is caused by the thread executing an invalid
machine instruction such as divide-by-zero. An interrupt is caused by some peripheral device and
can be handled in Harmony. In other words: An interrupt is a notification, while an exception is
an error.

Harmony allows modeling interrupts using the trap statement:

trap handler argument

invokes handler argument at some later, unspecified time. Thus you can think of trap as
setting a timer. Only one of these asynchronous events can be outstanding at a time; a new call
to trap overwrites any outstanding one. Figure 20.1 gives an example of how trap might be used.
Here, the main() thread loops until the interrupt has occurred and the done flag has been set. After
this, count must equal 1.

But now consider Figure 20.2. The difference with Figure 20.1 is that both the main() and
handler() methods increment count. This is not unlike the example we gave in Figure 3.2, except
that only a single thread is involved now. And, indeed, it suffers from a similar race condition;
run it through Harmony to see for yourself. If the interrupt occurs after main() reads count (and
thus still has value 0) but before main() writes the updated value 1, then the interrupt handler will
also read value 0 and write value 1. We say that the code in Figure 20.2 is not interrupt-safe (as
opposed to not being thread-safe).

You would be excused if you wanted to solve the problem using locks, similar to Figure 7.3.
Figure 20.3 shows how one might go about this. But locks are intended to solve synchronization
issues between multiple threads. But an interrupt handler is not run by another thread—it is run
by the same thread that experienced the interrupt. If you run the code through Harmony, you will
find that the code may not terminate. The issue is that a thread can only acquire a lock once. If
the interrupt happens after main() acquires the lock but before main() releases it, the handler()
method will block trying to acquire the lock, even though it is being acquired by the same thread
that already holds the lock.

132

1 count = 0
2 done = False
3

4 finally count == 1
5

6 def handler():
7 count += 1
8 done = True
9

10 def main():
11 trap handler()
12 await done
13

14 spawn main()

Figure 20.1: [code/trap.hny] How to use trap

1 count = 0
2 done = False
3

4 finally count == 2
5

6 def handler():
7 count += 1
8 done = True
9

10 def main():
11 trap handler()
12 count += 1
13 await done
14

15 spawn main()

Figure 20.2: [code/trap2.hny] A race condition with interrupts

133

https://harmony.cs.cornell.edu/code/trap.hny
https://harmony.cs.cornell.edu/code/trap2.hny

1 from synch import Lock, acquire, release
2

3 countlock = Lock()
4 count = 0
5 done = False
6

7 finally count == 2
8

9 def handler():
10 acquire(?countlock)
11 count += 1
12 release(?countlock)
13 done = True
14

15 def main():
16 trap handler()
17 acquire(?countlock)
18 count += 1
19 release(?countlock)
20 await done
21

22 spawn main()

Figure 20.3: [code/trap3.hny] Locks do not work with interrupts

134

https://harmony.cs.cornell.edu/code/trap3.hny

1 count = 0
2 done = False
3

4 finally count == 2
5

6 def handler():
7 count += 1
8 done = True
9

10 def main():
11 trap handler()
12 setintlevel(True)
13 count += 1
14 setintlevel(False)
15 await done
16

17 spawn main()

Figure 20.4: [code/trap4.hny] Disabling and enabling interrupts

Instead, the way one fixes interrupt-safety issues is through disabling interrupts temporarily. In
Harmony, this can be done by setting the interrupt level of a thread to True using the setintlevel
interface. Figure 20.4 illustrates how this is done. Note that it is not necessary to change the
interrupt level during servicing an interrupt, because it is automatically set to True upon entry
to the interrupt handler and restored to False upon exit. It is important that the main() code re-
enables interrupts after incrementing count. What would happen if main() left interrupts disabled?

setintlevel(il) sets the interrupt level to il and returns the prior interrupt level. Returning the
old level is handy when writing interrupt-safe methods that can be called from ordinary code as
well as from an interrupt handler. Figure 20.5 shows how one might write a interrupt-safe method
to increment the counter.

It will often be necessary to write code that is both interrupt-safe and thread-safe. As you might
expect, this involves both managing locks and interrupt levels. To increment count, the interrupt
level must be True and countlock must be held. Figure 20.6 gives an example of how this might be
done. One important rule to remember is that a thread should disable interrupts before attempting
to acquire a lock.

Try moving acquire() to the beginning of the increment method and release() to the end
of increment and see what happens. This incorrect code can lead to threads getting blocked
indefinitely.

(Another option is to use synchronization techniques that do not use locks. See Chapter 21 for
more information.)

There is another important rule to keep in mind. Just like locks should never be held for
long, interrupts should never be disabled for long. With locks the issue is to maximize concurrent

135

https://harmony.cs.cornell.edu/code/trap4.hny

1 count = 0
2 done = False
3

4 finally count == 2
5

6 def increment():
7 let prior = setintlevel(True):
8 count += 1
9 setintlevel(prior)

10

11 def handler():
12 increment()
13 done = True
14

15 def main():
16 trap handler()
17 increment()
18 await done
19

20 spawn main()

Figure 20.5: [code/trap5.hny] Example of an interrupt-safe method

136

https://harmony.cs.cornell.edu/code/trap5.hny

1 from synch import Lock, acquire, release
2

3 count = 0
4 countlock = Lock()
5 done = [False, False]
6

7 finally count == 4
8

9 def increment():
10 let prior = setintlevel(True):
11 acquire(?countlock)
12 count += 1
13 release(?countlock)
14 setintlevel(prior)
15

16 def handler(self):
17 increment()
18 done[self] = True
19

20 def thread(self):
21 trap handler(self)
22 increment()
23 await done[self]
24

25 spawn thread(0)
26 spawn thread(1)

Figure 20.6: [code/trap6.hny] Code that is both interrupt-safe and thread-safe

137

https://harmony.cs.cornell.edu/code/trap6.hny

performance. For interrupts the issue is fast response to asynchronous events. Because interrupts
may be disabled only briefly, interrupt handlers must run quickly and cannot wait for other events.

Exercises

20.1 The put method you implemented in Exercise 13.1 cannot be used in interrupt handlers for
two reasons: (1) it is not interrupt-safe, and (2) it may block for a long time if the buffer is full.
Yet, it would be useful if, say, a keyboard interrupt handler could place an event on a shared
queue. Implement a new method i put(item) that does not block. Instead, it should return False
if the buffer is full and True if the item was successfully enqueued. The method also needs to be
interrupt-safe.

138

Chapter 21

Non-Blocking Synchronization

So far, we have concentrated on critical sections to synchronize multiple threads. Certainly,
preventing multiple threads from accessing certain code at the same time simplifies how to think
about synchronization. However, it can lead to starvation. Even in the absence of starvation, if
some thread is slow for some reason while being in the critical section, the other threads have to
wait for it to finish executing the critical section. Also, using synchronization primitives in interrupt
handlers is tricky to get right (Chapter 20) and might be too slow. In this chapter, we will have a
look at how one can develop concurrent code in which threads do not have to wait for other threads
(or interrupt handlers) to complete their ongoing operations.

As an example, we will revisit the producer/consumer problem. The code in Figure 21.1 is
based on code developed by Herlihy and Wing [HW87]. The code is a “proof of existence” for
non-blocking synchronization; it is not necessarily practical. There are two variables. items is an
unbounded array with each entry initialized to None. back is an index into the array and points
to the next slot where a new value is inserted. The code uses two atomic operations:

� inc(p): atomically increments !p and returns the old value;

� exch(p): sets !p to None and returns the old value.

Method produce(item) uses inc(?back) to allocate the next available slot in the items array. It
stores the item as a singleton tuple. Method consume() repeatedly scans the array, up to the back
index, trying to find an item to return. To check an entry, it uses exch() to atomically remove an
item from a slot if there is one. This way, if two or more threads attempt to extract an item from
the same slot, at most one will succeed.

There is no critical section. If one thread is executing instructions very slowly, this does not
negatively impact the other threads, as it would with solutions based on critical sections. On
the contrary, it helps them because it creates less contention. Unfortunately, the solution is not
practical for the following reasons:

� The items array must be of infinite size if an unbounded number of items may be produced;

� Each slot in the array is only used once, which is inefficient;

� the inc and exch atomic operations are not universally available on existing processors.

139

1 const MAX ITEMS = 3
2

3 sequential back, items
4 back = 0
5 items = [None,] * MAX ITEMS

6

7 def inc(pcnt) returns prior :
8 atomically:
9 prior = !pcnt

10 !pcnt += 1
11

12 def exch(pv) returns prior :
13 atomically:
14 prior = !pv
15 !pv = None
16

17 def produce(item):
18 items[inc(?back)] = item
19

20 def consume() returns next :
21 next = None
22 while next == None:
23 var i = 0
24 while (i < back) and (next == None):
25 next = exch(?items[i])
26 i += 1
27

28 for i in {1..MAX ITEMS}:
29 spawn produce(i)
30 for i in {1..choose({0..MAX ITEMS})}:
31 spawn consume()

Figure 21.1: [code/hw.hny] Non-blocking queue

140

https://harmony.cs.cornell.edu/code/hw.hny

However, in the literature you can find examples of practical non-blocking (a.k.a. wait-free) syn-
chronization algorithms.

Exercises

21.1 A seqlock consists of a lock and a version number. An update operation acquires the lock,
increments the version number, makes the changes to the data structure, and then releases the lock.
A read-only operation does not use the lock. Instead, it retrieves the version number, reads the
data structure, and then checks if the version number has changed. If so, the read-only operation is
retried. Use a seqlock to implement a bank much like Exercise 15.1, with one seqlock for the entire
bank (i.e., no locks on individual accounts). Method transfer is an update operation; method
total is a read-only operation. Explain how a seqlock can lead to starvation.

141

Chapter 22

Alternating Bit Protocol

A distributed system is a concurrent system in which a collection of threads communicate by message
passing, much the same as in the actor model. The most important difference between distributed
and concurrent systems is that the former takes failures into account, including failures of threads
and failures of shared memory. In this chapter, we will consider two actors, Alice and Bob. Alice
wants to send a sequence of application messages to Bob, but the underlying network may lose
messages. The network does not re-order messages: When sending messages m1 and m2 in that
order, then if both messages are received, m1 is received before m2. Also, the network does not
create messages out of nothing: If message m is received, then message m was sent.

It is useful to create an abstract network that reliably sends messages between threads, much
like the FIFO queue in the synch module. For this, we need a network protocol that Alice and Bob
can run. In particular, it has to be the case that if Alice sends application messages m1, ...,mn in
that order, then if Bob receives an application message m, then m = mi for some i and, unless m
is the very first message, Bob will already have received application messages m1, ...,mi−1 (safety).
Also, if the network is fair and Alice sends application message m, then eventually Bob should
deliver m (liveness).

The Alternating Bit Protocol (Figure 22.1) is suitable for our purposes. We assume that there
are two unreliable network channels: one from Alice to Bob and one from Bob to Alice. Alice
and Bob each maintain a zero-initialized sequence number, s seq and r seq resp. Alice sends a
network message to Bob containing an application message as payload and Alice’s sequence number
as header. When Bob receives such a network message, Bob returns an acknowledgment to Alice,
which is a network message containing the same sequence number as in the message that Bob
received.

In the protocol, Alice keeps sending the same network message until she receives an acknowl-
edgment with the same sequence number. This is called retransmission. When she receives the
desired sequence number, Alice increments her sequence number. She is now ready to send the
next message she wants to send to Bob. Bob, on the other hand, waits until he receives a message
matching Bob’s sequence number. If so, Bob delivers the payload in the message and increments
his sequence number. Because of the network properties, a one-bit sequence number suffices.

We can model each channel as a variable that either contains a network message or nothing (we
use () to represent nothing in the model). Let s chan be the channel from Alice to Bob and r chan
the channel from Bob to Alice. net send(pchan, m) models sending a message m to !pchan, where

142

1 def net send(pchan, msg):
2 atomically:
3 !pchan = msg if choose({ False, True }) else ()
4

5 def net recv(pchan) returns msg :
6 atomically:
7 msg = !pchan
8 !pchan = ()
9

10 def app send(net, seq, payload):
11 !seq = 1 – !seq
12 let m = { .seq : !seq, .payload : payload }:
13 var blocked = True
14 while blocked :
15 net send(?net→s chan, m)
16 let response = net recv(?net→r chan):
17 blocked = (response == ()) or (response.ack != !seq)
18

19 def app recv(net, seq) returns payload :
20 !seq = 1 – !seq
21 var blocked = True
22 while blocked :
23 let m = net recv(?net→s chan):
24 if m != ():
25 net send(?net→r chan, { .ack : m.seq })
26 if m.seq == !seq :
27 payload = m.payload

28 blocked = False

Figure 22.1: [code/abp.hny] Alternating Bit Protocol

143

https://harmony.cs.cornell.edu/code/abp.hny

1 import abp

2

3 const NMSGS = 10
4

5 invariant s seq in { 0, 1 }
6 invariant r seq in { 0, 1 }
7

8 network = { .s chan: (), .r chan: () }
9 s seq = r seq = 0

10

11 def sender():
12 for i in {1..NMSGS}:
13 abp.app send(?network, ?s seq, i)
14

15 def receiver():
16 var i = 1
17 while True:
18 let payload = abp.app recv(?network, ?r seq):
19 assert payload == i
20 i += 1
21

22 spawn sender()
23 spawn eternal receiver()

Figure 22.2: [code/abptest.hny] Test code for alternating bit protocol

144

https://harmony.cs.cornell.edu/code/abptest.hny

pchan is either ?s chan or ?r chan. The method places either m (to model a successful send) or ()
(to model loss) in !pchan. net recv}(pchan) models checking !pchan for the next message. If there
is a message, it sets !pchan to ().

Method app send(net, seq, msg) retransmits { .seq : !seq, .payload : msg } until an acknowledg-
ment for !seq is received. Method app recv(net, seq) returns the next successfully received message
(with the given sequence number bit) if any. Figure 22.2 shows how the methods may be used to
send and receive a stream of NMSGS messages reliably. The number of messages must be bounded,
because model checking requires a finite model. Note that the receiver() is spawned as eternal
because it does not terminate.

Exercises

22.1 Chapter 16 explored the client/server model. It is popular in distributed systems as well.
Develop a protocol for a single client and server using the same network model as for the ABP
protocol. Hint: The response to a request can contain the same sequence number as the request.

22.2 Generalize the solution in the previous exercise to multiple clients. Each client is uniquely
identified. You may either use separate channel pairs for each client, or solve the problem using a
single pair of channels.

22.3 The alternating bit protocol is a special case of a sliding window protocol with a window
size of 1 and using 2 sequence numbers. TCP uses a sliding window protocol. Using a window
size of W , a client is able to send W messages at the same time before having to wait for an
acknowledgment, but you’ll need more than W sequence numbers to make it work. After receiving
an acknowledgment, the window can be moved up. Implement a sliding window protocol.

145

Chapter 23

Leader Election

Leader election is the problem of electing a unique leader in a network of processors. Typically this
is challenging because the processors have only limited information. In the version that we present,
each processor has a unique identifier. The processors are organized in a ring, but each processor
only knows its own identifier and the identifier of its successor on the ring. Having already looked
into the problem of how to make the network reliable, we assume here that each processor can
reliably send messages to its successor.

The protocol that we present elects as leader the processor with the highest identifier [CR79] and
works in two phases: In the first phase, each processor sends its identifier to its successor. When a
processor receives an identifier that is larger than its own identifier, it forwards that identifier to its
successor as well. If a processor receives its own identifier, it discovers that it is the leader. That
processor then starts the second phase by sending a message around the ring notifying the other
processors of the leader’s identifier.

Figure 23.1 describes the protocol and its test cases in Harmony. In Harmony, processors can be
modeled by threads and there are a variety of ways in which one can model a network using shared
variables. Here, we model the network as a set of messages. The send method atomically adds a
message to this set. Messages are tuples with three fields: (dst, id, found). dst is the identifier of the
destination processor; id is the identifier that is being forwarded; and found is a boolean indicating
the second phase of the protocol. The receive(self) method looks for all messages destined for the
processor with identifier self.

To test the protocol, the code first chooses the number of processors and generates an identifier
for each processor, chosen non-deterministically from a set of NIDS identifiers. The code also keeps
track in the variable leader of what the highest identifier is, so it can later be checked.

Method processor(self, succ) is the code for a processor with identifier self and successor succ.
It starts simply by sending its own identifier to its successor. The processor then loops until it
discovers the identifier of the leader in the second phase of the protocol. A processor waits for a
message using the Harmony atomically when exists statement. This statement takes the form

atomically when exists v in s: statement block

where s is a set and v is variable that is bound to an element of s. The properties of the
statement are as follows:

146

1 const NIDS = 5 # number of identifiers
2

3 network = {} # the network is a set of messages
4 leader = 0 # used for checking correctness
5

6 def send(msg):
7 atomically network |= { msg }
8

9 def receive(self) returns msg :
10 msg = { (id, found) for (dst, id, found) in network where dst == self }
11

12 def processor(self, succ):
13 send(succ, self, False)
14 var working = True
15 while working :
16 atomically when exists (id, found) in receive(self):
17 if id == self :
18 assert self == leader

19 send(succ, id, True)
20 elif id > self :
21 assert self != leader

22 send(succ, id, found)
23 if found :
24 working = False
25

26 var ids, nprocs, procs = { 1 .. NIDS }, choose({ 1 .. NIDS }), []
27 for i in { 0 .. nprocs – 1 }:
28 let next = choose(ids):
29 ids –= { next }
30 procs += [next,]
31 if next > leader:
32 leader = next
33 for i in { 0 .. nprocs – 1 }:
34 spawn processor(procs[i], procs[(i + 1) % nprocs])

Figure 23.1: [code/leader.hny] A leader election protocol on a ring

147

https://harmony.cs.cornell.edu/code/leader.hny

� it waits until s is non-empty;

� it is executed atomically;

� v is selected non-deterministically, like in the choose operator.

If a processor receives its own identifier, it knows its the leader. The Harmony code checks this
using an assertion. In real code the processor could not do this as it does not know the identifier of
the leader, but assertions are only there to check correctness. The processor then sends a message
to its successor that the leader has been found. If the processor receives an identifier higher than its
own, the processor knows that it cannot be the leader. In that case, it simply forwards the message.
A processor stops when it receives a message that indicates that the leader has been identified.

Note that there is a lot of non-determinism in the specification, leading to a lot of executions
that must be checked. First, every possible permutation of identifiers for the processors is tried.
When there are multiple messages to receive by a processor, every possible order is tried (including
receiving the same message multiple times). Fortunately, the atomically when exists statement
is executed atomically, otherwise the body of the statement could lead to additional thread inter-
leavings. Because in practice the different processors do not share memory, it is not necessary to
check those interleavings.

Exercises

23.1 Check if the code finds a unique leader if identifiers are not unique.

23.2 Messages are added atomically to the network. Is this necessary? What happens if you
remove the atomically keyword? Explain what happens.

148

Chapter 24

Transactions and Two Phase
Commit

Modern databases support multiple clients concurrently accessing the data. They store data on
disk, but we will ignore that in this book. (If you want to model a disk, this is probably best
done as a separate thread that maintains the contents of the disk.) The complication we address
here is that databases may be sharded, where different parts of the data are stored on different
servers. The different servers may even be under different authoritive domains, such as multiple
banks maintaining the accounts of their clients.

In database terminology, a transaction is an operation on a database. The operation can be
quite complex, and the execution of a transaction should have the following two properties:

� all-or-nothing : a transaction should either complete, or it should be a no-op. A transaction
should never partially execute and then give up because of some kind of error or something.
Database people call this atomicity, but it is not the same kind of atomicity that we have
been discussing in this book.

� serialized : any two concurrent transactions should appear to execute in some order. Database
people call this isolation: one transaction should not be able to witness the intermediate state
of another transaction in execution.

We will use as an example a distributed database that maintains bank accounts. For simplicity,
we will model this as a collection of banks, each maintaining a single account. There are two
kinds of transactions: transfer (similar to Exercise 15.1) and check. In this example, a transfer
is a transaction that moves some funds between two accounts. A check is a transaction over all
accounts and checks that the sum of the balances across the accounts remains the same.

Executing such transactions must be done with care. Consider what would happen if transac-
tions are not all-or-nothing or are not serialized. A transfer consists of two operations: Withdrawing
funds from one account and depositing the same amount of funds in the other. These two operations
can be done concurrently, but if the withdrawal fails (for example, because there are not sufficient
funds in the source account) then the whole transaction should fail and become a no-op. Even if
this is not the case, a concurrent check transaction may accidentally witness a state in which either
the withdrawal or the deposit happened, but not both. And matters get more complicated with
multiple concurrent transfers.

149

2 const NBANKS = 3
3 const NCOORDS = 2
4 const MAX BALANCE = 1
5

6 network = {}
7

8 def send(msg):
9 atomically network |= { msg }

10

11 def bank(self, balance):
12 var balance = balance
13 var status, received = (), {}
14 while True:
15 atomically when exists req in network – received when req.dst == self :
16 received |= { req }
17 if req.request == "withdraw":
18 if (status != ()) or (req.amount > balance):
19 send({ .dst : req.src, .src: self, .response: "no" })
20 else:
21 status = balance
22 balance –= req.amount
23 send({ .dst : req.src, .src: self, .response: "yes", .funds: balance })
24 elif req.request == "deposit":
25 if status != ():
26 send({ .dst : req.src, .src: self, .response: "no" })
27 else:
28 status = balance
29 balance += req.amount
30 send({ .dst : req.src, .src: self, .response: "yes", .funds: balance })
31 elif req.request == "commit":
32 assert status != ()
33 status = ()
34 else:
35 assert (status != ()) and (req.request == "abort")
36 balance, status = status, ()

Figure 24.1: [code/2pc.hny] Two Phase Commit protocol: code for banks

150

https://harmony.cs.cornell.edu/code/2pc.hny

40 def transfer(self, b1, b2, amt):
41 send({ .dst : b1, .src: self, .request : "withdraw", .amount : amt })
42 send({ .dst : b2, .src: self, .request : "deposit", .amount : amt })
43 atomically let msgs = { m for m in network where m.dst == self }
44 when { m.src for m in msgs } == { b1, b2 }:
45 if all(m.response == "yes" for m in msgs):
46 for m in msgs where m.response == "yes":
47 send({ .dst : m.src, .src: self, .request : "commit" })
48 else:
49 for m in msgs where m.response == "yes":
50 send({ .dst : m.src, .src: self, .request : "abort" })
51

52 def check(self, total):
53 let allbanks = { (.bank, i) for i in { 0 .. NBANKS – 1} }:
54 for b in allbanks:
55 send({ .dst : b, .src: self, .request : "withdraw", .amount : 0 })
56 atomically let msgs = { m for m in network where m.dst == self }
57 when { m.src for m in msgs } == allbanks:
58 assert all(m.response == "yes" for m in msgs) =>
59 (sum(m.funds for m in msgs) == total)
60 for m in msgs where m.response == "yes":
61 send({ .dst : m.src, .src: self, .request : "abort" })
62

63 let balances = [choose({ 0 .. MAX BALANCE }) for in { 0 .. NBANKS – 1}]:
64 for i in { 0 .. NBANKS – 1 }:
65 spawn eternal bank((.bank, i), balances[i])
66 for i in { 1 .. NCOORDS }:
67 if choose({ "transfer", "check" }) == .transfer :
68 let b1 = choose({ (.bank, j) for j in { 0 .. NBANKS – 1}})
69 let b2 = choose({ (.bank, j) for j in { 0 .. NBANKS – 1}} – { b1 }):
70 spawn transfer((.coord, i), b1, b2, 1)
71 else:
72 spawn check((.coord, i), sum(balances))

Figure 24.2: [code/2pc.hny] Two Phase Commit protocol: code for transaction coordinators

151

https://harmony.cs.cornell.edu/code/2pc.hny

The Two-Phase Commit protocol [Gra78] is a protocol that can be used to implement trans-
actions across multiple database servers—banks in this case. Each transaction has a coordinator
that sends a PREPARE message to each of the servers involved in the transaction, asking them to
prepare to commit to their part in a particular transaction. A server can either respond with YES

if it is ready to commit and will avoid doing anything that might jeopardize this (like committing
a conflicting transaction), or with NO if it does not want to participate in the transaction. If all
servers respond with YES, then the coordinator can decide to commit the transaction. Otherwise the
coordinator must decide to abort the transaction. In the second phase, the servers that responded
with YES (if any) must be notified to inform them of the coordinator’s decision.

Different transactions can have different coordinators. In our implementation, each bank and
each coordinator is a thread. Figure 24.1 shows the code for a bank. The state of a bank consists
of the following local variables:

� self : the bank’s identifier;

� balance: the current balance in the account;

� status: either contains () if the bank is not involved in an ongoing transaction or contains the
balance just before the transaction started;

� received : the set of messages received and handled so far.

Messages sent to a bank are dictionaries with the following fields:

� .dst : identifier of the bank;

� .src: identifier of the coordinator that sent the message;

� .request : request type, which is either .withdraw, .deposit, .commit, or .abort ;

� .amount : amount to withdraw or deposit.

A bank waits for a message destined to itself that it has not yet received. In case of a withdrawal
when the bank is idle and there are sufficient funds, the bank saves the current balance in status to
indicate an ongoing transaction and what its original balance was. The bank then responds with a
.yes message to the coordinator, including the new balance. Otherwise, the bank responds with a
.no message. Deposits are similar, except that it is not necessary to check for sufficient funds. In
case of a .commit message, the bank changes its status to (), indicating that there is no ongoing
transaction. In case of a .abort message, the bank restores balance first.

Figure 24.2 contains the code for transfers and inquiries, as well as tests. The receive() method
is used by coordinators in an atomically when exists statement to wait for a response from each
bank involved in a transaction. Argument self is the identifier of the coordinator and sources is
the set of banks. The method returns the empty set if there are not yet responses from all banks.
Otherwise it returns a singleton set containing the set of responses, one for each source.

The transfer() method contains the code for the transfer transaction. Argument self is the
identifier of the coordinator, b1 is the source bank, b2 is the destination bank, and amt is the
amount to transfer. The coordinator sends a PREPARE message containing a .withdraw request
to b1 and a PREPARE message containing a .deposit request to b2. The coordinator then waits for
responses from each. If both responses are .yes, then it commits the transaction, otherwise it aborts
the transaction.

152

The check() method checks if the sum of the balances equals total, the sum of the initial
balances. The code is similar to transfer, except that it always aborts the transaction—there is
no need to ever commit it. As a code-saving hack: The balance inquiry is done by withdrawing $0.

As for testing, the initial balances are picked arbitrarily between 0 and MAX BALANCE (and
Harmony as always will try every possible set of choices). Each coordinator chooses whether to
do a transfer or a check. In case of a transfer, it also chooses the source bank and the destination
bank.

While the protocol perhaps seems simple enough, there are a lot of if statements in the code,
making it hard to reason about correctness. Model checking is useful to see if there are corner cases
where the code does not work. While confidence increases by increasing the number of banks or
the number of coordinators, doing so quickly increases the number of possible states so that model
checking may become infeasible.

Exercises

24.1 In Exercise 15.1 the code ran into a deadlock. Can the code in this chapter run into a
deadlock? Explain.

24.2 Transactions can fail for two reasons: A transfer transaction can fail because of insufficient
funds, but in general transaction can fail if there is a conflict with another transaction. The latter
can be fixed by retrying the transaction until it commits. Implement this.

24.3 One way to reduce the number of conflicts between transactions is to distinguish read and
write operations. Two read operations (in our case, operations that withdraw $0 do not conflict,
so a bank could have multiple ongoing read operations for different transactions. Implement this.

24.4 Two-phase commit can tolerate servers failing. If a server does not respond within some
reasonable amount of time, the coordinator can abort the transaction. Implement this.

153

Chapter 25

Chain Replication

As you have probably experienced, computers can crash. If you are running a web service, you may
not be able to afford a long outage. If you are running software that flies a plane, then an outage
for any length of time could lead to a disaster. To deal with service outages caused by computers
crashing, you may want to replicate the service onto multiple computers. As long as one of the
computers survives, the service remains available.

Besides availability, it is usually important that the replicated service acts as if it were a single
one. This requires that the replicas of the service coordinate their actions. The Replicated State
Machine Approach [Lam78, Sch90] is a general approach to do just this. First, you model your
service as a deterministic state machine. The replicas each run a copy of the state machine, started
in the same state. As long as the replicas handle the same inputs in the same order, determinism
guarantees that they produce the same outputs in the same order.

Figure 25.1 presents a Harmony specification of state machine replication. We model the state
machine as a history : a sequence of operations. In a replicated state machine, the abstract network
maintains this history as an ordered queue of messages. NOPS clients each place an operation on
the network. The replicas process messages from the ordered network.

All but one of the replicas is allowed to crash. Crashes are modeled as interrupts, so we use
Harmony’s trap clause to schedule one. When crashing, a replica simply stops. The model chooses
one of the replicas that is not allowed to crash. Of course, a replica does not know whether it is
immortal or not in practice—it should just assume that it is. The immortality of one of the replicas
is only used for modeling the assumptions we make about the system.

The behavior is captured as before. Before an operation is added to the network, a client prints
the operation (in this case, its own identifier). After a replica processes an operation, it prints a
pair consisting of its own identifier and the operation. All replicas print the same operations in the
same order until they crash. Figure 25.2 shows the allowed behaviors in case there are just two
clients and two replicas. Because one of the replicas is immortal and clients do not crash, at least
one of the replicas will print both operations (liveness). If both do, they do so in the same order
(safety).

But in reality the network is not an ordered queue and better modeled as a set of messages. The
trick now is to ensure that all replicas handle the same requests in the same order and to do so in a
way that continues to work even if some strict subset of replicas crash. Chain Replication [vRS04]
is such a replication protocol. In Chain Replication, the replicas are organized in a linear chain

154

1 const NREPLICAS = 3 # number of replicas
2 const NOPS = 2 # number of operations
3

4 network = [] # the network is a queue of messages
5

6 def crash():
7 stop()
8

9 def send(msg):
10 atomically network += [msg,]
11

12 def replica(self, immortal):
13 if not immortal :
14 trap crash()
15 var delivered = 0
16 while True:
17 atomically when len(network) > delivered :
18 let msg = network [delivered]:
19 print(self, msg)
20 delivered += 1
21

22 def client(self):
23 print(self)
24 send(self)
25

26 let immortal = choose {1..NREPLICAS}:
27 for i in {1..NREPLICAS}:
28 spawn eternal replica(i, i == immortal)
29 for i in {1..NOPS}:
30 spawn client(i)

Figure 25.1: [code/rsm.hny] Replicated State Machine

155

https://harmony.cs.cornell.edu/code/rsm.hny

Figure 25.2: The DFA generated by Figure 25.1 when NOPS=2 and NREPLICAS=2

which may change as replicas crash. Importantly, at any point in time there is only one head and
one tail replica.

Only the head is allowed to accept new operations from clients. When it does so, it adds the
operation to the end of its history and sends the history to its successor on the chain. When the
direct successor receives such a history, it makes sure that the history is an extension of its own and,
if so, replaces its own history with the one received. It then sends the history on to its successor,
if any. When an operation reaches the tail, the operation is what is known as stable—it has been
reliably ordered and persisted.

In order for this to work, each replica needs to know who is its predecessor and who is its
successor. So, when a replica fails, its neighbors should find out about it. In practice, one server
can detect the failure of another server by pinging it. If a server does not receive a response to its
ping within some maximum amount of time, then the server considers its peer crashed. Note that
this, in general, is not a safe thing to do—the network or the peer may be temporarily slow but the
peer is not necessarily crashed when the timer expires.

Nonetheless, we will assume here that failure detection does not make mistakes and that even-
tually every failure is detected. This is called the Fail-Stop failure model [SS83], which is distinct
from the often more realistic Crash Failure model where processes can crash but accurate detection
is not available. We will consider that more realistic failure model in the upcoming chapters. For
chain replication, when a replica crashes, it will reliably notify the other replicas by broadcasting
a message over the reliable network. Because failure detection is accurate, at most one replica can
think it is the head at any time (and, if so, it is in fact the head). Moreover, when it has detected
all its predecessors having failed, eventually some replica thinks it is the head. The same is true for
the tail.

156

3 const NREPLICAS = 3 # number of replicas
4 const NOPS = 2 # number of operations (or clients)
5

6 network = {} # the network is a set of messages
7

8 def send(self, dst, msg): # send msg to replica dst
9 atomically network |= { (dst, (self, msg)) }

10

11 def broadcast(self, msg): # broadcast msg to all
12 atomically for dst in {1..NREPLICAS}:
13 network |= { (dst, (self, msg)) }
14

15 def receive(self) returns msgs: # return messages for me
16 msgs = { payload for (dst, payload) in network where (dst == self) }
17

18 def crash(self): # server ’self ’ is crashing
19 broadcast(self, "crash") # notify all other replicas
20 stop()
21

22 def is prefix(hist1, hist2) returns result : # hist1 is a strict prefix of hist2
23 result = (len(hist1) < len(hist2)) and
24 all(hist1 [i] == hist2 [i] for i in {0..len(hist1)–1})

Figure 25.3: [code/chain.hny] Chain Replication (part 1)

157

https://harmony.cs.cornell.edu/code/chain.hny

3 const NREPLICAS = 3 # number of replicas
4 const NOPS = 2 # number of operations (or clients)
5

6 network = {} # the network is a set of messages
7

8 def send(self, dst, msg): # send msg to replica dst
9 atomically network |= { (dst, (self, msg)) }

10

11 def broadcast(self, msg): # broadcast msg to all
12 atomically for dst in {1..NREPLICAS}:
13 network |= { (dst, (self, msg)) }
14

15 def receive(self) returns msgs: # return messages for me
16 msgs = { payload for (dst, payload) in network where (dst == self) }
17

18 def crash(self): # server ’self ’ is crashing
19 broadcast(self, "crash") # notify all other replicas
20 stop()
21

22 def is prefix(hist1, hist2) returns result : # hist1 is a strict prefix of hist2
23 result = (len(hist1) < len(hist2)) and
24 all(hist1 [i] == hist2 [i] for i in {0..len(hist1)–1})

Figure 25.4: [code/chain.hny] Chain Replication (part 2)

158

https://harmony.cs.cornell.edu/code/chain.hny

Figure 25.3 and Figure 25.4 show an implemenation of chain replication. The network is modeled
as a append-only set of messages of the form (destination, (source, payload)). When sending, a
message is atomically added to this set. A client broadcasts its operation to all replicas.

Each replica maintains its own history hist and a chain configuration config. The replica executes
a loop in which it receives and atomically handles messages until it crashes. As before, one of the
replicas cannot crash. Because replicas do not want to handle the same message twice, each replica
maintains a set received of messages it has already handled. Each replica then waits for a message
on the network it has not already handled before.

When a replica receives a client request, it adds the request to a set requests that it maintains.
A replica can only handle such a request if it is the head, but each replica can eventually become the
head so it should carefully save all requests. (In theory, it can remove them as soon as they are on
its history.) When a replica receives a failure notification, it updates its configuration accordingly.
When a non-head replica receives a history that extends its own history, then the replica adopts
the received history.

Next, if a replica is the head, it adds any requests it has received to its history unless they are
already on there. If a replica is the tail, it “delivers” operations on its history (by printing the
operation) that it has not already delivered. For this, it maintains a counter delivered that counts
the number of delivered requests. Any replica that is not the tail sends its history to its successor
in the chain.

The question is whether chain replication has the same behavior as the replicated state machine
specification of Figure 25.1. This can be checked using the following two Harmony commands:

$ harmony -o rsm.hfa code/rsm.hny

$ harmony -B rsm.hfa code/chain.hny

The first command outputs the behavior DFA of code/rsm.hny in the file rsm.hfa. The second
command checks that the behavior of code/chain.hny satisfies the DFA in rsm.hfa. Note that
chain replication does not produce all the possible behaviors of a replicated state machine, but all
its behaviors are valid.

The model has each replica send its entire history each time it extends its history. This is fine
for modeling, but in practice that would not scale. In practice, a predecessor would set up a TCP
connection to its successor and only send updates to its history along the TCP connection. Because
TCP connections guarantee FIFO order, this would be identical to the predecessor sending a series
of histories, but much more efficient.

159

Chapter 26

Working with Actions

So far we have mostly modeled concurrent activities using threads. Another way of modeling is
by enumerating all the possible state transitions from any given state. For example, this is how
things are commonly specified in TLA+. As in TLA+, we call such state transitions actions. In
this chapter we will revisit modeling chain replication, but this time using actions.

Figure 26.1 and Figure 26.2 contain the new specification. The state of the replicas and the
clients are stored in the variables replicas and clients respectively. Each type of action is captured
using a lambda and a method. The method updates the state, while the lambda enumerates the
possible actions of this type.

For example, consider the crash action. All replicas, except the replica that is immortal and
the replicas that have already crashed, can crash. There is a lambda crash that generates a set
of all possible crashes. Each element in the set is a thunk, that is, a delayed call of a method and
an argument [Ing61]. For example, ?do crash(1) is the action representing replica 1 failing. If we
look at the do crash(p) method, all it does is set the crashed field of the replica. The specification
does this for every type of action:

� sendOperation: a client broadcasts an operation to all replicas.

� gotOperation: the head replica adds the operation to its history.

� sendHist: a replica sends its history to its successor.

� gotHist: a replica accepts a history it has received.

� deliver: the tail delivers (prints) an operation.

� crash: a replica crashes.

� detect: a replica detects the crash of a peer.

The Harmony action module explores all possible behaviors of such a specification. It has a
single method explore that takes a set of lambdas, each of which returning a set of possible actions.

So, which of the two types of specification do you prefer? One metric is readability, but that is
subjective and depends on what you have experience with. Another object is the size of the state
space, and in general control over the state space that is being explored. Threads have hidden state

160

3 import lists, action
4

5 const NREPLICAS = 3
6 const NOPS = 2
7

8 # Global state
9 let immortal = choose {1..NREPLICAS}:

10 replicas = { p: { .immortal : immortal == p, .crashed : False,
11 .requests: {}, .hist : [], .config : {1..NREPLICAS},
12 .received : {}, .delivered : 0 } for p in {1..NREPLICAS} }
13 clients = { c: { .sent request : False } for c in {1..NOPS} }
14

15 const is head = lambda(p): p == min(replicas[p].config) end
16 const is tail = lambda(p): p == max(replicas[p].config) end
17

18 def is successor(self, p) returns result :
19 let succ = { q for q in replicas[self].config where q > self }:
20 result = False if succ == {} else (p == min(succ))
21

22 def do sendOperation(c):
23 print(c)
24 clients[c].sent request = True
25 for p in {1..NREPLICAS}:
26 replicas[p].requests |= { c }
27

28 const sendOperation = lambda(): { ?do sendOperation(c)
29 for c in {1..NOPS} where not clients[c].sent request } end
30

31 def do gotOperation(self, op):
32 replicas[self].hist += [op,]
33

34 const gotOperation = lambda(): { ?do gotOperation(p, op)
35 for p in {1..NREPLICAS}
36 where not replicas[p].crashed and is head(p)
37 for op in replicas[p].requests
38 where op not in replicas[p].hist } end
39

40 def do sendHist(self, p):
41 replicas[p].received |= { replicas[self].hist }

Figure 26.1: [code/chainaction.hny] Chain Replication specification using actions (part 1)

161

https://harmony.cs.cornell.edu/code/chainaction.hny

45 const sendHist = lambda(): { ?do sendHist(p, q)
46 for p in {1..NREPLICAS}
47 where not replicas[p].crashed
48 for q in {1..NREPLICAS}
49 where is successor(p, q) and (replicas[p].hist not in replicas[q].received)
50 } end
51

52 def do gotHist(self, hist):
53 replicas[self].hist = hist
54

55 const gotHist = lambda(): { ?do gotHist(p, hist)
56 for p in {1..NREPLICAS} where not replicas[p].crashed
57 for hist in replicas[p].received where (len(replicas[p].hist) < len(hist))
58 and lists.startswith(hist, replicas[p].hist) } end
59

60 def do deliver(self):
61 print(self, replicas[self].hist [replicas[self].delivered])
62 replicas[self].delivered += 1
63

64 const deliver = lambda(): { ?do deliver(p)
65 for p in {1..NREPLICAS} where not replicas[p].crashed and
66 is tail(p) and (len(replicas[p].hist) > replicas[p].delivered) } end
67

68 def do crash(self):
69 replicas[self].crashed = True
70

71 const crash = lambda(): { ?do crash(p)
72 for p in {1..NREPLICAS}
73 where not replicas[p].crashed and not replicas[p].immortal } end
74

75 def do detect(self, p):
76 replicas[self].config –= { p }
77

78 const detect = lambda(): { ?do detect(p, q)
79 for p in {1..NREPLICAS} where not replicas[p].crashed
80 for q in {1..NREPLICAS} where replicas[q].crashed and
81 (q in replicas[p].config) } end
82

83 action.explore({sendOperation, gotOperation, sendHist,
84 gotHist, deliver, crash, detect})

Figure 26.2: [code/chainaction.hny] Chain Replication specification using actions (part 2)

162

https://harmony.cs.cornell.edu/code/chainaction.hny

such as their stacks, program counters, and local variables, adding to the state space in sometimes
unexpected ways. With an action-based specification all state is explicit, and all state changes are
explicit. This can be advantageous. On the other hand, the thread-based specification is easier to
turn into an actual running implementation.

163

Chapter 27

Replicated Atomic Read/Write
Register

A register is an object that you can read or write (Figure 27.1). In a distributed system, examples
include a shared file system (each file is a register) or a key/value store (each key corresponds to
a register). A simple shared register implementation would have its value maintained by a server,
and clients can read or write the shared register by exchanging messages with the server. We call
two operations such that one does not finish before the other starts concurrent. Since messages are
delivered one at a time to the server, concurrent operations on the shared register appear atomic.
In particular, we have the following three desirable properties:

1. All write operations are ordered;

2. A read operation returns either the last value written or the value of a concurrent write
operation.

3. If read operation r1 finishes before read operation r2 starts, then r2 cannot return a value
that is older than the value returned by r1.

It is instructive to look at the test program and its output in Figure 27.2. This is for the case
when there is only a single reader thread (identified as “1”) and a single writer thread (identified
as “−1”), but already there are many cases to consider. Each thread prints information just before
and just after doing their single operation. The output shows all possible interleavings in the form
of a DFA. Note that if the read operation starts after the write operation has completed, then the
read operaion must return the new value. However, if the two operations interleave in some way,
then the read operation can return either the old or the new value.

Unfortunately, a server is a single point of failure: If it fails, all its clients suffer. We would
therefore like to find a solution that can survive the crash of a server. While we could use Chain
Replication to replicate the register, in this chapter we will use a solution that does not assume
that crashes can be accurately detected.

We will again replicate the register object: Maintain multiple copies, but we will not use the
replicated state machine approach. One could, for example, imagine that clients write to all copies
and read from any single one. While this solves the single-point-of-failure problem, we lose all the

164

1 reg = None
2

3 def init():
4 pass
5

6 def read(uid) returns contents:
7 atomically contents = reg
8

9 def write(uid, v):
10 atomically reg = v

Figure 27.1: [code/register.hny] An atomic read/write register

nice properties above. For one, it is not guaranteed that all servers receive and process all write
operations in the same order.

We present a protocol preserving these properties that is based on the work by Hagit Attiya,
Amotz Bar-Noy, and Danny Dolev [ABND95]. In order to tolerate F failures, it uses N = 2F +
1 servers. In other words, the register survives as long as a strict majority of its copies survive.
All write operation will be ordered by a unique logical timestamp (see also Chapter 10). Each
server maintains not only the value of the object, but also the timestamp of its corresponding write
operation.

Each read and write operation consists of two phases. In a phase, a client broadcasts a request
to all servers and waits for responses from a majority (N – F or equivalently F + 1 servers). Note
that because we are assuming that no more than F servers can fail, doing so is safe, in that a client
cannot indefinitely block as long as that assumption holds.

In the first phase, a client asks each server for its current timestamp and value. After receiving
N – F responses, the client determines the response with the highest timestamp. In case of a write
operation, the client then computes a new unique timestamp that is strictly higher than the highest
it has seen. To make this work, timestamps are actually lexicographically ordered tuples consisting
of an integer and the unique identifier of the client that writes the value. So, if (t, c) is the highest
timestamp observed by client c′, and c′ needs to create a new timestamp, it can select (t + 1, c′).
After all (t+ 1, c′) > (t, u) and no other client will create the same timestamp.

Suppose client c′ is trying to write a value v. In phase 2, client c′ broadcasts a request containing
timestamp (t + 1, c′) and v. Each server that receives the request compares (t + 1, c′) against its
current timestamp. If (t+ 1, c′) is larger than its current timestamp, it adopts the new timestamp
and its corresponding value v. In either case, the server responds to the client. Upon c′ receiving
a response from N – F servers, the write operation completes. In case of a read operation, client
c′ simply writes back the highest timestamp it saw in the first phase along with its corresponding
value.

Figure 27.3 contains the code for a server, as well as the code for read and write operations.
For efficiency of model checking, the servers are anonymous—otherwise we would have to consider
every permutation of states of those servers. Because the servers are anonymous, they may end

165

https://harmony.cs.cornell.edu/code/register.hny

1 import register

2

3 const NREADERS = 2
4 const NWRITERS = 1
5

6 def reader(i):
7 print(i, "reads")
8 let v = register.read(i):
9 print(i, "read", v)

10

11 def writer(i):
12 print(i, "writes")
13 register.write(i, i)
14 print(i, "wrote")
15

16 register.init()
17 for i in { 1 .. NREADERS }:
18 spawn reader(i)
19 for i in { 1 .. NWRITERS }:
20 spawn writer(–i)

Figure 27.2: [code/abdtest.hny] Behavioral test for atomic read/write registers and the output
for the case that NREADERS = NWRITERS = 1

166

https://harmony.cs.cornell.edu/code/abdtest.hny

1 import bags

2

3 const F = 1
4 const N = (2 * F) + 1
5

6 network = bags.empty()
7

8 def send(m): atomically network = bags.add(network, m)
9

10 def server():
11 var t, v, received = (0, None), None, {}
12 while True:
13 atomically when exists m in { k for k in keys network – received
14 where k.type in {"read", "write"} }:
15 received |= { m }
16 if (m.type == "write") and (m.value[0] > t):
17 t, v = m.value

18 send({ .type: .response, .dst : m.src, .value: (t, v) })
19

20 def init():
21 for i in { 1 .. N }: spawn eternal server()
22

23 def receive(uid, phase) returns quorums:
24 let msgs = { m:c for m:c in network
25 where (m.type == .response) and (m.dst == (uid, phase)) }:
26 quorums = bags.combinations(msgs, N – F)
27

28 def read(uid) returns contents:
29 send({ .type: "read", .src: (uid, 1) })
30 atomically when exists msgs in receive(uid, 1):
31 let (t, v) = max(m.value for m in keys msgs):
32 send({ .type: "write", .src: (uid, 2), .value: (t, v) })
33 contents = v
34 atomically when exists msgs in receive(uid, 2):
35 pass
36

37 def write(uid, v):
38 send({ .type: "read", .src: (uid, 1) })
39 atomically when exists msgs in receive(uid, 1):
40 let (t,) = max(m.value for m in keys msgs)
41 let nt = (t [0] + 1, uid):
42 send({ .type: "write", .src: (uid, 2), .value: (nt, v) })
43 atomically when exists msgs in receive(uid, 2):
44 pass

Figure 27.3: [code/abd.hny] An implementation of a replicated atomic read/write register

167

https://harmony.cs.cornell.edu/code/abd.hny

up sending the same exact message, but clients are waiting for a particular number of messages.
Because of this, we will model the network as a bag of messages.

A server initializes its timestamp t to (0, None) and its value to None. Each server also keeps
track of all the requests its already received so it doesn’t handle the same request twice. The rest
of the code is fairly straightforward.

Read and write operations are both invoked with a unique identifier uid. Both start by broad-
casting a .read request to all servers and then waiting for a response from N – F servers. The
receive() function uses the bag.combinations method to find all combinations of subsets of re-
sponses of size N – F. The second phase of each operation is similar.

Figure 27.2 can be used to test this protocol, although you will notice that the model checker
cannot deal with cases involving more than three client threads. Three is just enough to check the
third property listed above (using one writer and two readers). Doing so illustrates the importance
of the second phase of the read operation. You can comment out Lines 34, 36, and 37 in Figure 27.3
and to elide the second phase and see what goes wrong.

One may wonder how failures can occur in this model. They are not explicitly modeled, but
Harmony tries every possible execution. This includes executions in which the clients terminate
before F of the servers start executing. To the clients, this is indistinguishable from executions in
which those servers have failed.

168

Chapter 28

Distributed Consensus

Distributed consensus is the problem of having a collection of processors agree on a single value
over a network. For example, in state machine replication, the state machines have to agree on
which operation to apply next. Without failures, this can be solved using leader election: First
elect a leader, then have that leader decide a value. But consensus often has to be done in adverse
circumstances, for example in the face of processor failures.

Each processor proposes a value, which we assume here to be from the set { 0, 1 }. By the usual
definition of consensus, we want the following three properties:

1. Validity : a processor can only decide a value that has been proposed;

2. Agreement : if two processors decide, then they decide the same value.

3. Termination: each processor eventually decides.

The consensus problem is impossible to solve in the face of processor failures and without making
assumptions about how long it takes to send and receive a message [FLP85]. Here we will not worry
about Termination.

Figure 28.1 presents a specification for binary consensus—the proposals are from the set {0, 2}
In this case there are four processors. The proposal of processor i is in proposals[i]. The decision
is chosen from the set of proposals. Each processor may or may not print the decision—capturing
the absence of the Termination property. It may be that no decisions are made, but that does not
violate either Validity or Agreement. Thus the behavior of the program is to first print the array
of proposals, followed by some subset of processors printing their decision. Notice the following
properties:

� there are 16 = 24 possible proposal configurations;

� all processors that decide decide the same value;

� if all processors propose 0, then all processors that decide decide 0;

� if all processors propose 1, then all processors that decide decide 1.

This is just the specification—in practice we do not have a shared variable in which we can store
the decision a priori. We will present a simple consensus algorithm that can tolerate fewer than

169

1 const N = 4
2

3 proposals = [choose({0, 1}) for i in {0..N–1}]
4 decision = choose { x for x in proposals }
5

6 def processor(proposal):
7 if choose { False, True }:
8 print decision
9

10 print proposals
11 for i in {0..N–1}:
12 spawn processor(proposals[i])

Figure 28.1: [code/consensus.hny] Distributed consensus code and behavior DFA

170

https://harmony.cs.cornell.edu/code/consensus.hny

1/3rd of processors failing by crashing. More precisely, constant F contains the maximum number
of failures, and we will assume there are N = 3F + 1 processors.

Figure 28.2 presents our algorithm. Besides the network variable, it uses a shared list of pro-
posals and a shared set of decisions. In this particular algorithm, all messages are broadcast to all
processors, so they do not require a destination address. The N processors go through a sequence
of rounds in which they wait for N – F messages, update their state based on the messages, and
broadcast messages containing their new state. The reason that a processor waits for N – F rather
than N messages is because of failures: Up to F processors may never send a message and so it
would be unwise to wait for all N. You might be tempted to use a timer and time out on waiting
for a particular processor. But how would you initialize that timer? While we will assume that the
network is reliable, there is no guarantee that messages arrive within a particular time. We call a
set of N – F processors a quorum. A quorum must suffice for the algorithm to make progress.

The state of a processor consists of its current round number (initially 0) and an estimate
(initially the proposal). Therefore, messages contain a round number and an estimate. To start
things, each processor first broadcasts its initial round number and initial estimate. The number of
rounds that are necessary to achieve consensus is not bounded. But Harmony can only check finite
models, so there is a constant NROUNDS that limits the number of rounds.

In Line 21, a processor waits for N – F messages using the Harmony atomically when ex-
ists statement. Since Harmony has to check all possible executions of the protocol, the
receive(round, k) method returns all subbags of messages for the given round that have size
k = N – F. The method uses a dictionary comprehension to filter out all messages for the given
round and then uses the bag.combinations method to find all combinations of size k. The atomi-
cally when exists statement waits until there is at least one such combination and then chooses
an element, which is bound to the quorum variable. The body of the statement is then executed
atomically. This is usually how distributed algorithms are modeled, because they can only inter-
act through the network. There is no need to interleave the different processes other than when
messages are delivered. By executing the body atomically, a lot of unnecessary interleavings are
avoided and this reduces the state space that must be explored by the model checker significantly.

The body of the atomically when exists statement contains the core of the algorithm. Note
that N – F = 2F + 1, so that the number of messages is guaranteed to be odd. Also, because there
are only 0 and 1 values, there must exist a majority of zeroes or ones. Variable count [0] stores the
number of zeroes and count [1] stores the number of ones received in the round. The rules of the
algorithm are simple:

� update estimate to be the majority value;

� if the quorum is unanimous, decide the value.

After that, proceed with the next round.
To check for correct behavior, run the following two commands:

$ harmony -o consensus.hfa code/consensus.hny

$ harmony -B consensus.hfa code/bosco.hny

Note that the second command prints a warning: “behavior warning: strict subset of

specified behavior.” Thus, the set of behaviors that our algorithm generates is a subset of the
behavior that the specification allows. Figure 28.3 shows the behavior, and indeed it is not the

171

1 import bags

2

3 const F = 1
4 const N = (3 * F) + 1
5 const NROUNDS = 3
6

7 proposals = [choose({0, 1}) for i in {0..N–1}]
8 network = bags.empty()
9

10 def broadcast(msg):
11 atomically network = bags.add(network, msg)
12

13 def receive(round, k) returns quorum:
14 let msgs = { e:c for (r,e):c in network where r == round }:
15 quorum = bags.combinations(msgs, k)
16

17 def processor(proposal):
18 var estimate, decided = proposal, False
19 broadcast(0, estimate)
20 for round in {0..NROUNDS–1}:
21 atomically when exists quorum in receive(round, N – F):
22 let count = [bags.multiplicity(quorum, i) for i in { 0..1 }]:
23 assert count [0] != count [1]
24 estimate = 0 if count [0] > count [1] else 1
25 if count [estimate] == (N – F):
26 if not decided :
27 print estimate
28 decided = True
29 assert estimate in proposals # check validity
30 broadcast(round + 1, estimate)
31

32 print proposals
33 for i in {0..N–1}:
34 spawn processor(proposals[i])

Figure 28.2: [code/bosco.hny] A crash-tolerant consensus protocol

172

https://harmony.cs.cornell.edu/code/bosco.hny

Figure 28.3: The behavior DFA for Figure 28.2

173

same as the behavior of Figure 28.1. This is because in our algorithm the outcome is decided a
priori if more than twothirds of the processors have the same proposal, whereas in the consensus
specification the outcome is only decided a priori if the processors are initially unanimous. Another
difference is that if the outcome is decided a priori, all processors are guaranteed to decide.

While one can run this code within little time for F = 1, for F = 2 the state space to explore is
already quite large. One way to reduce the state space to explore is the following realization: Each
processor only considers messages for the round that it is in. If a message is for an old round, the
processor will ignore it; if a message is for a future round, the processor will buffer it. So, one can
simplify the model and have each processor wait for all N messages in a round instead of N – F. The
processor would still have to choose to consider just N – F out of those N messages, but executions
in which some processors are left behind in all rounds are no longer considered. It still includes
executions where some subset of N – F processors only choose each other messages and essentially
ignore the messages of the remaining F processors, so the resulting model is just as good.

Another way to reduce the state space to explore is to leverage symmetry. First of all, it does
not matter who proposes a particular value. Also, the values 0 and 1 are not important to how the
protocol operates. So, with 5 processors (F = 2), say, we only need to explore the cases where no
processors propose 1, where exactly one processors proposes 1, and where 2 processors proposes 1.

Figure 28.4 shows the code for this optimized model. Running this with F = 2 does not take
very long and this approach is a good blueprint for testing other round-based protocols (of which
there are many).

Exercises

28.1 The algorithm as given works in the face of crash failures. A more challenging class to
tolerate are arbitrary failures in which up to F processors may send arbitrary messages, including
conflicting messages to different peers (equivocation). The algorithm can tolerate those failures if
you use N = 5F – 1 processors instead of N = 3F – 1. Check that.

28.2 In 1983, Michael Ben-Or presented a randomized algorithm that can tolerate crash failures
with just N = 2F – 1 processors [BO83]. Implement this algorithm.

174

1 import bags

2

3 const F = 1
4 const N = (3 * F) + 1
5 const NROUNDS = 3
6

7 let n zeroes = choose { 0 .. N / 2 }:
8 proposals = ([0,] * n zeroes) + ([1,] * (N – n zeroes))
9 network = bags.empty()

10

11 def broadcast(msg):
12 atomically network = bags.add(network, msg)
13

14 def receive(round) returns quorum:
15 let msgs = { e:c for (r,e):c in network where r == round }:
16 quorum = {} if bags.size(msgs) < N else { msgs }
17

18 def processor(proposal):
19 var estimate, decided = proposal, False
20 broadcast(0, estimate)
21 for round in {0..NROUNDS–1}:
22 atomically when exists msgs in receive(round):
23 let choices = bags.combinations(msgs, N – F)
24 let quorum = choose(choices)
25 let count = [bags.multiplicity(quorum, i) for i in { 0..1 }]:
26 assert count [0] != count [1]
27 estimate = 0 if count [0] > count [1] else 1
28 if count [estimate] == (N – F):
29 if not decided :
30 print estimate
31 decided = True
32 assert estimate in proposals # validity
33 broadcast(round + 1, estimate)
34

35 print proposals
36 for i in {0..N–1}:
37 spawn processor(proposals[i])

Figure 28.4: [code/bosco2.hny] Reducing the state space

175

https://harmony.cs.cornell.edu/code/bosco2.hny

Chapter 29

Paxos

Paxos [Lam98] is the most well-known family of consensus protocols for environments in which
few or no assumptions are made about timing. In this chapter, we present a basic version of a
Paxos protocol, one that is single-decree (only tries to make a single decision). It uses two kinds
of processors: leaders and acceptors. In order to tolerate F crash failures, you need at least F + 1
leaders and 2F + 1 acceptors, but leaders and acceptors can be colocated, so in total only 2F + 1
independently failing processors are needed. Here we provide only a rudimentary introduction to
Paxos; for more detailed information refer to [Lam98].

As in the consensus protocol of Chapter 28, Paxos uses rounds of messaging. The communication
pattern, however, is different. Similar to the atomic read/write register protocol in Chapter 27,
Paxos uses two kinds of rounds: “Phase 1” and “Phase 2” rounds. Rounds are identified by a so-
called ballot number combined with the phase number. Different leaders are in charge of different
ballot numbers. Leaders broadcast “Type A” messages to the acceptors, which respond point-to-
point with “Type B” messages.

Figure 29.1 and Figure 29.2 contain the code for this Paxos protocol. Paxos is perhaps best
understood starting with the second phase. At the end of the first phase, the leader broadcasts a
2.A message (Phase 2, Type A) to the acceptors containing the ballot number and a proposal and
then waits for N – F matching 2.B responses from the acceptors. If each response contains the ballot
number and the proposal, then the proposal is deemed decided. But one or more of the responses
can contain a higher ballot number, in which case the leader has to try again with an even higher
ballot number. This is where the first phase comes in.

It is not possible that an acceptor responds with a smaller ballot number. This is because
acceptors maintain two state variables. One is ballot, the highest ballot number they have seen.
Second is a variable called last accepted that, if not None, contains the last proposal the acceptor
has accepted and the corresponding ballot number. The acceptor also contains a set received that
contains (ballot, phase) tuples identifiying all rounds that the ballot has already participated in.
An acceptor waits for a message for a round that is not in received. If its ballot number is higher
than what it has seen before, the acceptor moves into that ballot. If the phase is 2, then the
acceptor accepts the proposal and remembers when it did so by saving the (ballot, proposal) tuple in
last accepted. In all cases, the acceptor responds with the current values of ballot and last accepted.

In its first phase, a leader of a ballot must come up with a proposal that cannot conflict with a
proposal of an earlier ballot that may already have been decided. To this end, the leader broadcasts

176

3 import bags

4

5 const F = 1
6 const NACCEPTORS = (2 * F) + 1
7 const NLEADERS = F + 1
8 const NBALLOTS = 2
9

10 network = bags.empty()
11

12 proposals = [choose({0, 1}) for i in {0..NLEADERS–1}]
13

14 def send(msg):
15 atomically network = bags.add(network, msg)
16

17 def receive(ballot, phase) returns quorum:
18 let msgs = { e:c for (b,p,t,e):c in network
19 where (b,p,t) == (ballot, phase, "B") }:
20 quorum = bags.combinations(msgs, NACCEPTORS – F)
21

22 print proposals
23 for i in {0..NLEADERS – 1}:
24 spawn leader(i + 1, proposals[i])
25 for i in {1..NACCEPTORS}:
26 spawn eternal acceptor()

Figure 29.1: [code/paxos.hny] A version of the Paxos protocol, Part 1

177

https://harmony.cs.cornell.edu/code/paxos.hny

30 def leader(self, proposal):
31 var ballot, estimate, decided = self, proposal, False
32 send(ballot, 1, "A", None)
33 while ballot <= NBALLOTS:
34 atomically when exists quorum in receive(ballot, 1):
35 let accepted = { e for e: in quorum where e != None }:
36 if accepted != {}:
37 , estimate = max(accepted)
38 send(ballot, 2, "A", estimate)
39 atomically when exists quorum in receive(ballot, 2):
40 if bags.multiplicity(quorum, (ballot, estimate)) == (NACCEPTORS – F):
41 assert estimate in proposals # validity
42 if not decided :
43 print estimate
44 decided = True
45 ballot += NLEADERS

46 if ballot <= NBALLOTS:
47 send(ballot, 1, "A", None)
48

49 def acceptor():
50 var ballot, last accepted, received = 0, None, {}
51 while True:
52 atomically when exists b,p,e in { (bb,pp,ee) for bb,pp,tt,ee: in network
53 where ((bb,pp) not in received) and (tt == "A") }:
54 received |= { (b, p) }
55 if b >= ballot :
56 ballot = b
57 if p == 2:
58 last accepted = (ballot, e)
59 send(b, p, "B", last accepted)

Figure 29.2: [code/paxos.hny] A version of the Paxos protocol, Part 2

178

https://harmony.cs.cornell.edu/code/paxos.hny

a 2.A message to the acceptors and awaits N – F of their last accepted values. If all those acceptors
responded with None, then the leader is free to choose its own proposal. Otherwise the leader
updates its proposal with the one corresponding to the highest ballot number. The leader then
moves on to the second round.

To run and check the Paxos code, do the following (leveraging the consensus specification of
Figure 28.1):

$ harmony -o consensus.hfa -cN=2 code/consensus.hny

$ harmony -B consensus.hfa code/paxos.hny

You should get a warning that our implementation of Paxos does not generate all possible
behaviors. This is because we only run the protocol for a finite number of ballots, and therefore at
least one of the ballots will be successful. With an unlimited number of ballots, Paxos may never
decide unless you make some liveness assumptions.

Exercises

29.1 Perhaps the trickiest detail of the algorithm is that, in Line 37 of Figure 29.2, the leader
selects the proposal with the highest ballot number it receives. Replace the max operator in that
statement with choose and see if it finds a problem. First try with NBALLOTS = 2 and then with
NBALLOTS = 3. (Warning, the latter may take a long time.) If it finds a problem, analyze the output
and see what went wrong.

29.2 [MWA+19] discusses a buggy version of Paxos. In this version, the responses to the second
phase are matched not by ballot number but by the value of the proposal. Implement this version
and, using Harmony, find the problem this causes.

179

Chapter 30

Needham-Schroeder
Authentication Protocol

The Needham-Schroeder protocol [NS78] is a security protocol in which two parties authenticate
one another by exchanging large and recently created random numbers called nonces that nobody
else should be able to read. The nonces should only be used once for an instantiation of the protocol
between honest participants (i.e., participants that follow the protocol). The version we describe
here uses public key cryptography [DH76]: with public key cryptography it is possible to create a
message for a particular destination that only that destination can read. We denote with 〈m〉p a
message m encrypted for p so that only p can decrypt the message and see that it contains m.

Suppose Alice wants to communicate with Bob. The three critical steps in the Needham-
Schroeder protocol are as follows:

1. Alice creates a new nonce NA and sends 〈1, A,NA〉Bob to Bob;

2. Upon receipt, Bob creates a new nonce NB and sends 〈2, NA, NB〉Alice to Alice;

3. Alice sends 〈3, NB〉Bob to Bob.

When Bob receives 〈1, A,NA〉Bob, Bob does not know for sure that the message came from
Alice, and even if it came from Alice, it does not know if Alice sent the message recently or if it
was replayed by some adversary. When Alice receives 〈2, NA, NB〉Alice, Alice does know that, if
Bob is honest, (1) Bob and only Bob could have created this message, and (2) Bob must have done
so recently (since Alice created NA). When Bob receives 〈3, NB〉Bob, Bob decides that it is Alice
that is trying to communicate at this time. Since Bob created NB recently and sent it encrypted to
Alice, Bob does not have to worry that the type 3 message was an old message that was replayed by
some adversary. Also, if Alice is honest, it seems only Alice can have seen the message containing
NB .

Thus, the intended security properties of this protocol are symmetric. Assuming Alice and Bob
are both honest:

� if Alice finishes the protocol with Bob and received BN from Bob, then nobody but Alice and
Bob can learn NB .

180

1 network = {}
2

3 dest = choose({ None, "Bob", "Corey" })
4

5 def send(msg):
6 atomically network |= { msg }
7

8 def alice():
9 if dest != None:

10 send({ .dst : dest,
11 .contents: { .type: 1, .nonce: "nonceA", .initiator : "Alice" } })
12 atomically when exists m in network when (m.dst == "Alice")
13 and (m.contents.type == 2) and (m.contents.nonce == "nonceA"):
14 send({ .dst : dest, .contents: { .type: 3, .nonce: m.contents.nonce2 } })
15

16 def bob():
17 atomically when exists m in network when (m.dst == "Bob")
18 and (m.contents.type == 1) and (m.contents.initiator == "Alice"):
19 send({ .dst : "Alice",
20 .contents: { .type: 2, .nonce: m.contents.nonce, .nonce2 : "nonceB" } })
21 atomically when exists m in network when (m.dst == "Bob")
22 and (m.contents.type == 3) and (m.contents.nonce == "nonceB"):
23 assert dest == "Bob"
24

25 def corey():
26 var received, nonces, msgs = {}, { "nonceC" }, {}
27 while True:
28 atomically when exists m in network – received when m.dst == "Corey":
29 received |= { m }
30 nonces |= { m.contents.nonce }
31 if m.contents.type == 2:
32 nonces |= { m.contents.nonce2 }
33 for dst in { "Alice", "Bob" } for n in nonces:
34 msgs |= {{ .dst : dst, .contents: { .type: 1, .nonce: n, .initiator : ini }}
35 for ini in { "Alice", "Bob" }}
36 msgs |= {{ .dst : dst, .contents: { .type: 2, .nonce: n, .nonce2 : n2 }}
37 for n2 in nonces }
38 msgs |= {{ .dst : dst, .contents: { .type: 3, .nonce: n }}}
39 send(choose(msgs – network))
40

41 spawn alice()
42 spawn eternal bob()
43 spawn eternal corey()

Figure 30.1: [code/needhamschroeder.hny] Needham-Schroeder protocol and an attack

181

https://harmony.cs.cornell.edu/code/needhamschroeder.hny

� if Bob finishes the protocol with Alice and received AN from Alice, then nobody but Bob and
Alice can learn NA.

After the protocol, Alice can include NA in messages to Bob and Bob can include NB in messages
to Alice to authenticate the sources of those messages to one another.

Figure 30.1 shows the protocol implemented in Harmony. A message 〈m〉p is encoded in Harmony
as a dictionary {.dst : p, .contents : m}. The code for Alice and Bob simply follows the steps
listed above.

Unfortunately, the protocol turns out to be incorrect, but it took 17 years before somebody
noticed [Low95]. Model checking can be used to find the bug [Low96]. To demonstate the bug, we
need to model the environment. In particular, we introduce a third party, which we will call Corey.
We want to make sure that Corey cannot impersonate Alice or Bob. However, it is possible that
Alice tries to set up an authenticated connection to Corey using the Needham-Schroeder protocol.
That in itself should not be a problem if the protocol were correct.

The code in Figure 30.1 has Alice either not do anything, or has Alice try to set up a connection
to either Bob or Corey. Bob only accepts connections with Alice. Corey, when receiving a message
that it can decrypt, will try to find an attack by sending every possible message to every possible
destination. In particular, it keeps track of every nonce that it has seen and will try to construct
messages with them to send to Alice and Bob. If Bob finishes the protocol, it checks to see if Alice
actually tried to connect to Bob. If not, the assertion fails and an attack is found.

Running the code in Figure 30.1 quickly finds a viable attack. The attack goes like this:

1. Alice creates a new nonce NA and sends 〈1, A,NA〉Corey to Corey;

2. Upon receipt, Corey sends 〈1, A,NA〉Bob to Bob;

3. Upon receipt, Bob, believing it is engaging in the protocol with Alice, creates a new nonce
NB and sends 〈2, NA, NB〉Alice to Alice;

4. Alice thinks the message came from Corey (because it contains NA, which Alice created for
Corey and sent to Corey) and sends 〈3, NB〉Corey to Corey.

5. Corey learns NB and sends 〈3, NB〉Bob to Bob.

6. Bob receiving 〈3, NB〉Bob is identical to the situation in which Alice tried to set up a connection
to Bob, so Bob now thinks it is talking to Alice, even though Alice never tried to communicate
with Bob.

The security property is violated. In particular, Bob, duped by Corey, finished the protocol with
Alice and received AN , and even though Bob and Alice are both honest, Corey has a copy of AN .
So, Corey is now able to impersonate Alice to Bob (but not vice versa because Alice did not try to
authenticate Bob).

Exercises

30.1 Figure out how to fix the protocol.

30.2 There were two versions of the Needham-Schroeder protocol: the Symmetric Key protocol
and the Public Key protocol. In this chapter we only discussed the latter, but the former also had
a problem. See if you can find it using Harmony.

182

Bibliography

[ABND95] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-
passing systems. J. ACM, 42(1):124–142, January 1995.

[Agh86] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems (doc-
toral dissertation). MIT Press, Cambridge, MA, USA, 1986.

[BH73] Per Brinch Hansen. Operating System Principles. Prentice-Hall, Inc., USA, 1973.

[Bir89] Andrew D. Birrell. An introduction to programming with threads. SRC report 35,
Digital Systems Research Center, Palo Alto, CA, USA, January 1989.

[BNS69] László A. Bélády, R. A. Nelson, and G. S. Shedler. An anomaly in space-time char-
acteristics of certain programs running in a paging machine. Communications of the
ACM, 12(6):349–353, June 1969.

[BO83] Michael Ben-Or. Another advantage of free choice (extended abstract): Completely
asynchronous agreement protocols. In Proceedings of the 2nd Annual ACM Symposium
on Principles of Distributed Computing, PODC’83, pages 27–30, New York, NY, USA,
1983. ACM.

[CES71] Edward G. Coffman, Melanie Elphick, and Arie Shoshani. System deadlocks. ACM
Comput. Surv., 3(2):67–78, June 1971.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst., 8(2):244–263, April 1986.

[CHP71] Pierre-Jacques Courtois, Frans Heymans, and David L. Parnas. Concurrent control
with “readers” and “writers”. Commun. ACM, 14(10):667–668, October 1971.

[Cor69] Fernando J. Corbató. A paging experiment with the Multics system. In In Honor of
Philip M. Morse, pages 217–228, 1969.

[CR79] Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun. ACM, 22(5):281–283,
May 1979.

[DH76] Whitfield. Diffie and Martin E. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, 1976.

183

[Dij62] Edsger W. Dijkstra. EWD-35: Over de sequentialiteit van procesbeschrijvingen. circu-
lated privately, approx. 1962.

[Dij64] Edsger W. Dijkstra. EWD-108: Een algorithme ter voorkoming van de dodelijke
omarming. circulated privately, approx. 1964.

[Dij65a] Edsger W. Dijkstra. EWD-123: Cooperating Sequential Processes. circulated privately,
1965.

[Dij65b] Edsger W. Dijkstra. Solution of a problem in concurrent programming control. Com-
mun. ACM, 8(9):569–569, September 1965.

[Dij72] Edsger W. Dijkstra. EWD-329 information streams sharing a finite buffer. 1972.

[Dij79] Edsger W. Dijkstra. EWD-703: A tutorial on the split binary semaphore. circulated
privately, March 1979.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[Gra78] Jim N. Gray. Notes on data base operating systems, pages 393–481. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1978.

[Hav68] James W. Havender. Avoiding deadlock in multitasking systems. IBM Syst. J.,
7(2):74–84, June 1968.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism
for artificial intelligence. In Proceedings of the 3rd International Joint Conference on
Artificial Intelligence, IJCAI’73, page 235–245, San Francisco, CA, USA, 1973. Morgan
Kaufmann Publishers Inc.

[Hoa74] C. A. R. Hoare. Monitors: An operating system structuring concept. Commun. ACM,
17(10):549–557, October 1974.

[Hol11] Gerard Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 1st edition, 2011.

[HW87] Maurice P. Herlihy and Jeannette M. Wing. Axioms for concurrent objects. In Proceed-
ings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’87, page 13–26, New York, NY, USA, 1987. Association for Com-
puting Machinery.

[Ing61] Peter Z. Ingerman. Thunks: A way of compiling procedure statements with some
comments on procedure declarations. Commun. ACM, 4(1):55–58, jan 1961.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Comm. of the ACM, 21(7):558–565, July 1978.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems,
16(2):133–169, 1998.

184

[Lam02] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA, 2002.

[Lam09] Leslie Lamport. The PlusCal Algorithm Language. In Martin Leucker and Carroll
Morgan, editors, Theoretical Aspects of Computing - ICTAC 2009, pages 36–60, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public-key authentication protocol.
Inf. Process. Lett., 56(3):131–133, November 1995.

[Low96] Gavin Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In Tiziana Margaria and Bernhard Steffen, editors, Tools and Algorithms for
the Construction and Analysis of Systems, pages 147–166, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg.

[LR80] Butler W. Lampson and David D. Redell. Experience with processes and monitors in
Mesa. Commun. ACM, 23(2):105–117, February 1980.

[MS96] Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proceedings of the 15th annual ACM
Symposium on Principles of Distributed Computing (PODC), 1996.

[MWA+19] Ellis Michael, Doug Woos, Thomas Anderson, Michael D. Ernst, and Zachary Tatlock.
Teaching rigorous distributed systems with efficient model checking. In Proceedings
of the Fourteenth EuroSys Conference 2019, EuroSys ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[NS78] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication in
large networks of computers. Commun. ACM, 21(12):993–999, December 1978.

[Pet81] Gary L. Peterson. Myths about the mutual exclusion problem. Information Processing
Letters, 12(3):115 – 116, 1981.

[Sch90] Fred B. Schneider. Implementing fault-tolerant services using the state machine ap-
proach: A tutorial. ACM Computing Surveys, 22(4):299–319, December 1990.

[Sch97] Fred B. Schneider. On Concurrent Programming. Springer-Verlag, Berlin, Heidelberg,
1997.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-Stop Processors: An approach to
designing fault-tolerant computing systems. ACM Transactions on Computer Systems,
1(3):222–238, August 1983.

[vRS04] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high
throughput and availability. In Eric A. Brewer and Peter Chen, editors, 6th Sympo-
sium on Operating System Design and Implementation (OSDI 2004), San Francisco,
California, USA, December 6-8, 2004, pages 91–104. USENIX Association, 2004.

185

Appendix A

Harmony Language Reference

A.1 Value Types and Operators

Chapter 4 provides an introduction to Harmony values. Below is a complete list of Harmony value
types with examples:

Type Name Example
Boolean "bool" False, True
Integer "int" ..., –2, –1, 0, 1, 2, ...
String "str" "example", .example
Bytecode Address "pc" (method names and lambdas)
List "list" [1, 2, 3,], ((1, 2), 3), [1,], ()
Dictionary "dict" { .account : 12345, .valid : False }, {:}
Set "set" {}, { 1, 2, 3 }, { False, .id, 3 }
Address "address" ?lock, ?flags[2], ?f(2), None
Context "context" (generated by stop or save expression)

In Harmony, there is no distinction between tuples (denoted with parentheses) and lists (denoted
by square brackets). That is, their format is either (e, e, ..., e,) or [e, e, ..., e,]. They map indexes
(starting at 0) to Harmony values. If the list has two or more elements, then the final comma is
optional.

Method type e returns the type name of Harmony value e.
All Harmony values are ordered with respect to one another. First they are ordered by type

according to the table above. So, for example, True < 0 < .xyz < { 0 }. Within types, the following
rules apply:

� False < True;

� integers are ordered in the natural way;

� strings are lexicographically ordered;

� bytecode addresses are ordered by their integer values;

186

� lists are lexicographically ordered;

� dictionaries are first converted into a list of ordered (key, value) pairs. Then two dictionaries
are lexicographically ordered by this representation;

� a set is first converted into an ordered list, then lexicographically ordered;

� Except for None, an address is a pair of a function and a list of arguments. Addresses are
lexicographically ordered accordingly. None is the smallest address.

� contexts (Section C.3) are ordered deterministically in an unspecified way.

Harmony supports the following comparison operators:

e == e equivalence
e != e inequivalence
e < e, e <= e, e > e, e >= e ordering

In Harmony programs, the ordering operators are only allowed on pairs of integers, pairs of
strings, pairs of lists, or pairs of sets. In the case of strings and lists, the ordering is lexicographical.
In the case of sets, the ordering is partial based on the subset relation. Comparison operators can
be chained: x <= y == z means x ≤ y∧y = z, although y is evaluated once in the former and twice
in the latter expression. Note that evaluation of a chain stops as soon as one of the comparisons
fails. So, 1 < 0 < x does not evaluate x. (This is called short-circuiting.)

Boolean

The boolean type has only two possible values: False and True. Unlike Python, in Harmony
booleans are distinct from integers, and in particular False 6= 0. In statements and expressions
where booleans are expected, it is not possible to substitute values of other types. That is, unlike
Python, Harmony has no notion of truthiness of non-boolean values.

Operations on booleans include:

e and e conjuction
e or e disjunction
e => e implication
not e negation
v if e else v ' v or v ' depending on e
any s disjunction for set or list s
all s conjunction for set or list s

The meanings of or, and, and => are perhaps best explained by putting them in terms of the
ternary if else operator:

� x or y means True if x else y

187

� x and y means False if not x else y

� x => y means True if not x else y

Consistent with Python, this means that the result of the operation may not be a Boolean. For
example, (False or 2) == 2. Also, the operators are not commutative. 2 or False is an illegal
expression because you cannot use an integer as a condition for if. We recommend using only
Booleans for these operators, so that their outputs are also guaranteed to be a Boolean. Finally,
note that the righthand side of a boolean expression may not be evaluated. For example, True or x
evaluates to True without evaluating x (another example of short-circuiting).

Integer

The integer type supports any whole number. Harmony supports decimal integers, hexadecimal
integers (start with ‘0x’), binary integers (start with ‘0b’), and octal integers (start with ‘0o’). In
the model checker, integers are currently implemented by two’s complement 60-bit words. The
model checker checks for overflow on various operations.

Operations on integers include:

–e negation
e + e sum
e – e difference
e * e product
e / e, e // e integer division
e % e, e mod e integer division remainder
e ** e power
˜e binary inversion
e & e binary and
e | e binary or
e ˆ e binary exclusive or
e << e binary shift left
e >> e binary shift right
{ e..e' } set of integers from e to e′ inclusive
abs e absolute value
bin e string containing e in binary format
hex e string containing e in hexadecimal format
oct e string containing e in octal format

String

A string is a sequence of zero or more unicode characters. If it consists entirely of alphanumerical
characters or underscore characters and does not start with a digit, then a string can be represented
by a “.” followed by the characters. For example, .example is the same as the string "example".

Native operations on strings include the following:

188

s k indexing
s k = v updating the character at index k to string v
s s ... concatenation
s + s concatenation
s * n n copies of s concatenated
v [not] in s check if v is [not] a substring in s
del s[x] remove the character from string variable s at index x
len s the length of s
keys s the set { 0 .. len(s) – 1 }
str e string representation of any value e
int e convert e to an integer
int(e, base) convert e to an integer in the given base
list e the list containing the characters in e
set e the set containing the characters in e

Set

In Harmony, you can create a set of any collection of Harmony values. Its syntax is {v0, v1, ...}.
Python users: Note that in Harmony the empty set is denoted as {}. (In Python, {} means the
empty dictionary, which is represented as {:} in Harmony.) As in Python, you can also use set()
to create an empty set, or set(t) to create a set of the elements in a list t.

The sets module (Section B.6) contains various convenient routines that operate on sets. Native
operations on sets include:

len s cardinality
s < s strict subset
s <= s subset
s > s strict superset
s >= s superset
s – s set difference
s & s intersection
s | s union
s ˆ s inclusion/exclusion (elements in odd number of sets)
choose s select an element (Harmony will try all)
min s minimum element
max s maximum element
any s True if any value is True
all s True if all values are True
list s sorted list of the elements of set s
sorted s sorted list of the elements of set s
sum s compute the sum of a set of integers

189

Harmony also supports set comprehension. In its simplest form, {f(v) for v in s} returns a set
that is constructed by applying f to all elements in s (where s is a set or a list). This is known
as mapping. But set comprehension is much more powerful and can include joining multiple sets
(using nested for loops) and filtering (using the where keyword).

For example: { x + y for x in s for y in s where (x * y) == 4 } returns a set that is
constructed by summing pairs of elements from s that, when multiplied, have the value 4.

List or Tuple

In Harmony, there is no distinction between a list or a tuple. You can denote a list by a sequence
of values, each value terminated by a comma. As per usual, you can use brackets or parentheses at
your discretion. For Python users, the important thing to note is that a singleton list in Harmony
must contain a comma. For example [1,] is a list containing the value 1, while [1] is the same as
the value 1.

The lists module (Section B.5) contains various convenient routines that operate on lists or
tuples. Native operations on lists or tuples include the following:

t k indexing
t k = v updating entry k to v
t t concatenation
t + t concatenation
t * n n copies of t concatenated
v [not] in t check if v is [not] a value in t
del t [x] remove the entry at index x
len t the length of t
keys t the set { 0 .. len(t) – 1 }
min t the minimum value in t
max t the maximum value in t
any t True if any value is True
all t True if all values are True
reversed t the elements of list t in reverse order
set t create a set from the elements in a list
sorted t sorted list from the elements of list t
sum t compute the sum of a list of integers
zip [t1, ...] zip together lists t1, ...

Lists and tuples support comprehension. In its most basic form: [f(v) for v in t]. For example,
to check if any element in a list t is even, you can write: any((x % 2) == 0 for x in t).

The domain of a list L of length n, interpreted as a function, are the integers 0..n−1. It is illegal
to read L[n]. However, unlike Python, it is possible to write into L[n]. For example, if variable x
contains [1, 2], then the statement x [2] = 3 results in x having the value [1, 2, 3].

190

Dictionary

A dictionary maps a set of values (known as keys) to another set of values. The generic syntax of
a dictionary is {k0 : v0, k1 : v1, ...}. Different from Python, the empty dictionary is written as {:}
(because {} is the empty set in Harmony). If there are duplicate keys in the list, then only the
one with the maximum value survives. Therefore the order of the keys in the dictionary does not
matter. Dictionaries can also be created with the dict builtin function. Its argument is a set or a
list of (key, value) pairs. In case of a set and there are multiple pairs with the same key, only the
one with the maximum value survives. In case of a list and there are multiple pairs with the same
key, only the last one in the list survives.

Dictionaries support comprehension. The basic form is: { f(v):g(v) for v in s }.
Operations on dictionaries include the following:

d k indexing
d k = v updating field k to v
del d [k] remove the entry with key k
len d the number of keys in d
keys d the set of keys in d
set d the set of keys in d
list d the list of keys in d
k [not] in d check if k is [not] a key in d
min d the minimum value in d
max d the maximum value in d
any d True if any value is True
all d True if all values are True
d & d & ... dictionary intersection
d | d | ... dictionary union

Because in Harmony brackets are used for parsing purposes only, you can write d [k] (or d(k))
instead of d k. However, if k is a string like .id, then you might prefer the notation k.id.

A bag (or multiset) is often represented by a dictionary that maps each element to its multiplicity.
For example, { 10:2, 12:1 } is the bag containing two copies of 10 and one copy of 12. Dictionary
intersection and dictionary union are defined so that they work well with bags. With disjoint
dictionaries, intersection and union work as expected. If there is a key in the intersection, then
dictionary intersection retains the minimum value while dictionary union retains the maximum
value. Unlike Python, Harmony dictionary intersection and union are commutative and associative.

The bags module (Section B.3) contains various convenient routines that operate on bags.
Native operations on bags include the following:

v [not] in b check if v is [not] in b
t & t & ... bag intersection
t | t | ... bag union

191

Bytecode Address

A bytecode address is an integer that can be used to index into Harmony bytecode. When you
define a method or a lambda function, you are creating a constant of the bytecode address type.
You can create lambda functions similarly to Python, except that the expression has to end on the
keyword end. For example: lambda(x,y): x+y end.

Address

A Harmony address is a type of thunk consisting of a curried function and a list of arguments
[Ing61]. A thunk delays the invocation of the curried function. A function can be a constant or a
variable and the arguments are all Harmony values. Given an address p = ?a[b][c]..., you can use
the notation !p to evaluate it. Harmony will first evaluate a, then apply the result to b, then apply
the result to c, and so on.

As a simple example, ?5 is the address of the constant 5, and therefore !?5 evaluates to 5. Now
consider the following program:

1 let p = ?5:
2 assert !p == 5
3 !p = 5
4 !p = 4

The only line in this program that fails is the last one, as you are not allowed to store 4 at the
address of 5.

a can be a constant that maps Harmony values to Harmony values: dictionaries, lists, and
strings. In that case, ?a[b] refers to the value of entry b in a.

The most common use of addresses is when a is a shared variable. In that case !?a evaluates to
the current value of a.

Finally, a can be a bytecode address (method or lambda). ?a(b) is then the thunk representing
a delayed call to method a and argument b. In this case, !?a(b) evaluates a(b). This can be used
to implement generators. For example, the following Harmony program, perhaps surprisingly, does
not run into failing assertions:

1 counter = 0
2

3 def f():
4 counter += 1
5 result = counter
6

7 let p = ?f():
8 if !p != 1: assert False
9 if !p != 2: assert False

10 if !p != 3: assert False

Internally, Harmony uses the address of a method variable and sometimes you see them on the
stack during a computation. If k is a method variable, then its address is output as ?@k. However,

192

1 def fork():
2 atomically:
3 let (r, ctx) = save True:
4 result = r
5 if r :
6 go ctx (False, None)
7

8 def main():
9 if fork():

10 print "parent"
11 else:
12 print "child"
13

14 spawn eternal main()

Figure A.1: Using save and go to implement fork()

at the Harmony language level there is no such thing as the address of a local variable. Consider
the following two programs:

1 x = 1
2 let p = ?x :
3 x = 2
4 assert !p == 2

1 var x = 1
2 let p = ?x :
3 x = 2
4 assert !p == 1

In the program on the left, x is a shared variable, and ?x is the location of variable x. In the
program on the right, x is a local variable. ?x evaluates x and then takes its address, so in this
case ?x equals ?1.

Like C, Harmony supports the shorthand p→v for the expression (!p).v.

Context

A context value (a.k.a. continuation) captures the state of a thread. A context is itself composed
over various Harmony values.

The following operations generate contexts:

save e returns a Harmony value
stop p saves context in !p and stops the thread

The save e expression, when invoked, returns a tuple (e, c) where c is the context value of the
thread right after the save instruction finished. Using go c r the context can be turned into a new

193

thread that, instead, returns r from the save e expression. See Figure A.1 for an example of how
this could be used to fork a thread into two threads.

The stop p expression stores the context of the thread right after the expression in !p (i.e., p
must be an address value) and terminates the thread. The thread can later be reinstantiated with
go !p r, in which case the stop expression returns r. A thread can be for ever suspended using
stop None or just stop().

A.2 Statements

Harmony currently supports the following statements (below, S is a list of statements and an lvalue
is an expression you can use on the left-hand side of an assignment statement):

e e is an expression
lv = [lv =]... e lv is an lvalue and e is an expression
lv [op]= e op is one of +, -, *, /, //, %, &, |, ˆ, and, or
assert b [, e] b is a boolean. Optionally report value of expression e
await b b is a boolean
const a = e a is a bound variable, e is a constant expression
def m a [returns v]: S m is an identifier, a a bound variable, and v a variable
del lv delete lv
finally e e is a boolean expression that must hold in each final state
for a[:b] in e [where c]: S a and b are bound variables, e is a set, dictionary, or string
from m import ... m identifies a module
global v, ... v is a shared global variable
go c e c is a context, e is an expression
if b: S else: S b is a boolean, S is a list of statements
import m, ... m identifies a module
invariant e e is an invariant (must always hold)
let a = e: S a is a bound variable, e is an expression
pass do nothing
print e e is an expression
sequential v, ... v has sequential consistency
spawn [eternal] lv [, t] lv is an lvalue expression, t is the thread-local state
trap lv lv is an lvalue expression
var v = e v is a new variable, e is an expression
when b: S b is a boolean, S a list of statements
when exists a in e: S a is a bound variable, e is an expression
while b: S b is a boolean, S a list of statements

� Bound variables are read-only.

� A statement can be preceded by the atomically keyword to make the statement atomic.

� Multiple for statements can be combined into a single statement.

� Multiple let and when statements can be combined into a single statement.

194

Single expression evaluation

Any expression by itself can be used as a statement. The most common form of this is a function
application, for example: f(). This statement evaluates f() but ignores its result. It is equivalent
to the assignment statement = f().

Assignment

The statement x = 3 changes the state by assigning 3 to variable x. x may be a local variable or a
shared variable. The statement x = y = 3 first updates y, then x. The statement x [f()] = y [g()] = h()
first evaluates f() to compute the address of x [f()], then evaluates g() to compute the address of
y [g()], then evaluates h(), then assigns the resulting value to y [g()] (using its previously computed
address), and finally assigns the same value to x [f()] (again using its previously computed address).
The statement a,b = c assumes that c is a tuple with two values. It first evaluates the addresses
of a and b and first assigns to the latter and then the former. If c is not a tuple with two values,
then Harmony will report an error.

Assigning to (underscore) evaluates the righthand side expression but is otherwise a no-op.
The left-hand side can also contain constants. For example (3, x) = (3, True) assigns True to x.
However, (3, x) = (4, True) fails.

The statement x += 3 loads x, adds 3, and then stores the results in x. In this case, it is
equivalent to x = x+3. However, in general this is not so. For example, x [f()] += 3 only evaluates
f() once. Unlike Python, however, x += [3,] is equivalent to x = x + [3,] in Harmony. (In Python,
the following two compound statements lead to different results for y : x = y = []; x += [3] and
x = y = []; x = x + [3].)

assert

The statement assert b evaluates b and reports an error if b is false. It should be considered a
no-op—it is part of the specification, not part of the implementation of the algorithm. In particular,
it specifies an invariant: Whenever the program counter points at the location where the assert
statement is, then b is always true. The expression b is evaluated atomically. Moreover, the
expression is not allowed to change the state. If it does change the state, Harmony will report an
error.

As in Python, you can specify an additional expression: assert b, e. The value of e will be
reported as part of the error should b evaluate to false.

atomically

A statement can be preceded by the atomically keyword to make the statement atomic. The
statement atomically: S1; S2; ... evaluates statements S1, S2, ... atomically. This means that
the statement runs indivisibly—no other thread can interleave in the atomic statement. The only
exception to this is if the atomic block executes a stop expression. In this case, another thread
can run. When the original thread is resumed (using a go statement), it is once again atomically
executing.

atomically statements are useful for specification and implementing synchronization primitives
such as test-and-set. They are also useful for testing. They are not a replacement for lock/unlock

195

and should not be used for synchronization in general implementation code. Lock/unlock does
allow other threads to run concurrently—just not in the same critical section.

await

The statement await b is equivalent to when b: pass. It is intended to improve readability of your
code.

const

The expression const N = 3 introduces a new constant N with the value 3. Evaluating N does
not lead to loading from a memory location. The assignment can be overridden with the -c flag:
harmony -cN=4 executes the model checker with 4 assigned to N instead of 3. Harmony also supports
const N, M = 3, 4, which assigns 3 to N and 4 to M. Harmony has limited support for constant folding.
For example, const N = 3 + 4 assigns value 7 to constant N.

def

The statement def m a [returns r]: S1; S2: ... defines a new bytecode address constant m referring
to a method that takes an argument a and executes the statements S1, S2, The argument a can
be a tuple pattern similar to those used in let and for statements. Examples include (), (x,), (x, y),
and (x, (y, z)). The given local variable names are assigned upon application and are read-only.
Optionally, a result variable r can be declared. Harmony does not support a return statement
that breaks out of the code before executing the last statement.

del

The statement del x removes variable x from the state. x can be either a local or a shared
variable. For example, the statement del x.age removes the .age field from dictionary x. Harmony
automatically removes top-level local variables that are no longer in use from the state in order to
attempt to reduce the number of states that are evaluated during model checking.

del can also be used to remove elements from a list. x = [.a, .b, .c]; del x [1] results in x having
value [.a, .c].

finally

The statement finally c declares that boolean expression c must hold in each final state. c is
only allowed to read shared variables and is evaluated in each final state. If it evaluates to False,
Harmony reports an error. Harmony also reports an error if the expression evaluates to a value
other than False or True.

for ... in ... [where ...]

The statement for x in y : S1; S2; ... iterates over y and executes for each element the statements
S1, S2, y must be a set, list, dictionary, or string. y is evaluated only once at the beginning
of the evaluation of this statement. In case of a set, the result is sorted (using Harmony’s global
order on all values). In case of a dictionary, the statement iterates over the keys in order. For

196

each element, the statements S1, S2, ... are executed with local variable y having the value of the
element. x can be a pattern such as (a) or (a, (b, c)). If the pattern cannot be matched, Harmony
detects and error.

Harmony also supports the form for k :v in y : S1; S2; This works similar, except that k is
bound to the key and v is bound to the value. If y is not a dictionary, then k ranges from 0 to
len(y) – 1.

The statement also supports nesting and filtering. for x1 in y1 for x2 in y2 : S1; S2; ...,
is equivalent to the statement for x1 in y1 : for x2 in y2 : S1; S2; Filtering is of the form
for x in y where z : S1; S2; For example, for x in 1 .. 10 where (x % 2) == 0: S1; S2; ... only
evaluates statements S1, S2, ... for even x, that is, 2, 4, 6, 8, and 10.

Harmony does not support break or continue statements.

from ... import

The statement from x import a, b, ... imports module x and makes its constants a, b, ... also
constants in the current module. If a module is imported more than once, its code is only included
the first time. The constants will typically be the names of methods (bytecode address constants)
within the module.

You can import all constants from a module m (including bytecode address constants) using
the statement from m import *. This, however, excludes constants whose names start with the
character : those are considered private to the module.

global

The statement global v, ... tells the compiler that the given variables are shared global variables.

go

The statement go c e starts a thread with context c that has executed a stop or save expression.
The stop or save expression returns value e. The same context can be started multiple times,
allowing threads to fork. See Figure A.1 for an example.

if ... [elif ...]* [else]

Harmony supports if statements. In its most basic form, if c: S1; S2; ... evaluates c and executes
statements S1, S2, ... if and only if boolean expression c evaluated to true. Harmony checks
that c is either False or True—if neither is the case, Harmony reports an error. The statement
if c: S1, S2, ... else: T1; T2; ... is similar, but executes statements T1, T2, ... if and only if c
evaluated to False. You can think of elif c: as shorthand for else: if c:.

import

The statement import m1, m2, ... imports modules m1, m2, ... in that order. If a module is
imported more than once, its code is only included the first time. The constants (including method
constants) and shared variables declared in that module can subsequently be referenced by prepend-
ing “m.”. For example, method f() in imported module m is invoked by calling m.f(). If you would
prefer to invoke it simply as f(), then you have to import using the statement from m import f.

197

invariant

The statement invariant c declares that boolean expression c is an invariant. c is only allowed to
read shared variables and is evaluated atomically after every state change. If it ever evaluates to
False, Harmony reports an error. Harmony also reports an error if the expression evaluates to a
value other than False or True.

Invariants can be useful to specify the type of a global variable. For example, you can write
invariant (type(x) == "int") and ((x % 2) == 0) to state that x is an even integer variable.

let

You can introduce new bound variables in a method using the let statement. The statement
let a = b: S1; S2, ... evaluates b, assigns the result to read-only variable a, and evaluates statements
S1, S2, let supports pattern matching, so you can write let x, (y, z) = b: S1; S2, This will only
work if b is a tuple with two elements, the second of which also being a tuple with two elements—if
not, Harmony will report an error.

let statements may be nested, such as let a1 = b1 let a2 = b2 : S1; S2; Doing so can improve
readability by reducing indentation compared to writing them as separate statements. Compare
the following two examples:

1 let a = y :
2 let b = z :
3 ...

1 let a = y
2 let b = z :

pass

The pass statement does nothing.

print

The statement print e evaluates e and adds the result to the print log. The print log is used to
create an “external behavior DFA” for the Harmony program.

sequential

In Harmony, shared variable Load and Store operations are atomic and have sequential consistency.
However, Harmony does check for data races. A data race occurs when two or more threads simul-
taneously access the same shared variable, with at least one of the accesses being a Store operation
outside of an atomic block. If so, Harmony will report an error. This error can be suppressed
by declaring the shared variable as sequential. In particular, the statement sequential x, y, ...
specifies that the algorithm assumes that the given variables have sequential consistency.

198

Note that few modern processors support sequentially consistent memory by default, as sequen-
tially consistent memory involves high overhead.

spawn

The statement spawn lv starts a new thread that evaluates lvalue expression lv. The most typical
form is spawn f(a), where f is some method called with argument a. However, if c is a thunk, one
could also call spawn !c, say.

Harmony normally checks that all threads eventually terminate. If a thread may never terminate,
you should spawn it with spawn eternal m a to suppress those checks.

trap

The statement trap lv specifies that the current thread should evaluate lv at some future, unspeci-
fied, time. The statement models a timer interrupt or any kind of asynchronous event to be handled
by the thread. Such interrupts can be disabled by setting the interrupt level of the thread to True
using the setintlevel operator.

var

You can introduce new local variables in a method using the var statement. The statement var a = b
evaluates b and assigns the result to local variable a. var supports pattern matching, so you can
write var x, (y, z) = b. This will only work if b is a tuple with two elements, the second of which
also being a tuple with two elements—if not, Harmony will report an error.

when

The statement when c: S1; S2; ... executes statements S1, S2, ... after waiting until c evaluates to
True. when statements are most useful when combined with the atomically keyword. If waiting
is an unused local variable, then atomically when c: S1; S2; ... is equivalent to

1 var waiting = True
2 while waiting :
3 atomically:
4 if c:
5 S1

6 S2

7 ...
8 waiting = False

Multiple let and when statements can be combined. The expressions before the colon are
re-evaluated repeated until all when conditions are satisfied.

when exists ... in ...

The statement when exists} x in y : S1; S2; ... requires that y evaluates to a set value. The
statement does the following three things:

199

� it waits until y is non-empty;

� it selects one element of y non-deterministically (using a choose expression);

� it executes statements S1, S2, ... with the selected element bound to read-only variable x.

x may be a pattern, like in let, for, and def statements. Harmony reports an error if y evaluates
to a value that is not a set.

when statements are most useful when combined with the atomically keyword. If waiting is
an unused local variable, then atomically when exists x in y : S1; S2; ... is equivalent to

1 var waiting = True:
2 while waiting :
3 atomically:
4 if y != {}:
5 let x = choose(y):
6 S1

7 S2

8 ...
9 waiting = False

The statement is particularly useful in programming network protocols when having to wait for
one or more messages and executing a set of actions atomically after the desired messages have
arrived.

while

The statement while c: S1; S2; ... executes statements S1, S2, ... repeatedly as long as c evaluates
to True. Harmony does not support break or continue statements.

A.3 Harmony is not object-oriented

Python is object-oriented, but Harmony is not. For Python programmers, this can lead to some
unexpected differences. For example, consider the following code:

1 x = y = [1, 2]
2 x [0] = 3
3 assert y [0] == 1

In Python, lists are objects. Thus x and y point to the same list, and the assertion would fail
if executed by Python. In Harmony, lists are values. So, when x is updated in Line 2, it does not
affect the value of y. The assertion succeeds. Harmony supports references to values (Chapter 6),
allowing programs to implement shared objects.

Because Harmony does not have objects, it also does not have object methods. However,
Harmony methods and lambdas are bytecode address constants. These constants can be added

200

to dictionaries. For example, in Figure 6.1 you can add the Peterson enter and Peterson exit

methods to the Peterson mutex dictionary like so:

1 { .turn: 0, .flags: [False, False], .enter : Peterson enter, .exit : Peterson exit }

That would allow you to simulate object methods.
There are at least two reasons why Harmony is not object-oriented. First, object-orientation

often adds layers of indirection that would make it harder to model check and also to interpret the
results. Consider, for example, a lock. In Python, a lock is an object. A lock variable would contain
a reference to a lock object. In Harmony, a lock variable contains the value of the lock itself. Thus,
the following statement means something quite different in Python and Harmony:

1 x = y = Lock()

In Python, this creates two variables x and y referring to the same lock. In Harmony, the
two variables will be two different locks. If you want two variables referring to the same lock in
Harmony, you might write:

1 lock = Lock()
2 x = y = ?lock

or, using the alloc module,

1 from alloc import malloc

2 x = y = malloc(Lock())

The second reason for Harmony not being object-oriented is that many concurrency solutions
in the literature are expressed in C or some other low-level language that does not support object-
orientation, but instead use malloc and free.

A.4 Constants, Global and Local Variables

Each (non-reserved) identifier in a Harmony program refers to either a global constant, a global
shared variable, a local bound variable, a local mutable variable, or a module. Constants are
declared using const statements. Those constants are evaluated at compile-time.

Mutable method variables can be declared using the returns clause of a def statement or using
var. Bound variables, which are immutable, can be declared in def statements (i.e., arguments),
let statements, for loops, and when exists statements. Each thread has a mutable variable called
this that contains the thread-local state. Method variables are tightly scoped and cannot be shared
between threads. While in theory one method can be declared within another, they cannot share
local variables either. All other variables are global and must be initialized before spawned threads
start executing.

201

A.5 Operator Precedence

In Harmony, there is no syntactic difference between applying an argument to a function or an
index to a dictionary. Both use the syntax a b c We call this application, and application is
left-associative. So, a b c is interpreted as (a b) c: b is applied to a, and then c is applied to the
result. For readability, it may help to write a(b) for function application and a[b] for indexing. In
case b is a simple string, you can also write a.b for indexing.

There are five levels of precedence. Application has the highest precedence. So, !a b is inter-
preted as !(a b) and a b + c d is interpreted as (a b) + (c d). Unary operators have the next
highest precedence, then boolean operators, then comparison operators, and then the remaining
operators.

Unary operators bind more strongly than binary operators, thus –a[1] – a[2] parses as (–(a[1])) –
(a[2]). !a[1] parses as !(a[1]). Avoiding other ambiguities, Harmony does not allow expressions of
the form a @b where @ is some kind of unary operator. You have to write this as either a[@b] or
a(@b).

Associative operators (+, *, |, &, ˆ, and, or) are interpreted as general n-ary operators, and you
are allowed to write a + b + c. However, ambiguous expressions such as a | b & c or a == b and c
are illegal. In such cases you have to add parentheses or brackets to indicate what the intended
evaluation order is, such as (a | b) & c. The only exception is simple arithmetic expressions such
as a – b – c, which is the same as (a – b) – c.

In almost all expressions, subexpressions are evaluated left to right. So, a[b] + c first evaluates
a, then b (and then applies b to a), and then c. The one exception is the expression a if c else b,
where c is evaluated first. In that expression, only a or b is evaluated depending on the value of c.
In the expression a and b and ..., evaluation is left to right but stops once one of the subexpressions
evaluates to False. Similarly for or, where evaluation stops once one of the subexpressions evaluates
to True. A sequence of comparison operations, such as a < b < c, is evaluated left to right but
stops as soon as one of the comparisons fails.

A.6 Tuples, Lists, and Pattern Matching

Harmony tuples and lists are equivalent. They can be bracketed either by ’(’ and ’)’ or by ’[’ and
’]’, but the brackets are often optional. Importantly, with a singleton list, the one element must be
followed by a comma. For example, the statement x = 1, assigns a singleton tuple (or list) to x.

Harmony does not support special slicing syntax like Python. Use the subseq method in the
lists module (Section B.5) instead.

Harmony allows pattern matching against nested tuples in various language constructs. The
following are the same in Python and Harmony:

� x, = 1,: assigns 1 to x ;

� x, y = 1, (2, 3): assigns 1 to x and (2, 3) to y ;

� x, (y, z) = 1, (2, 3): assigns 1 to x, 2 to y, and 3 to z ;

� x, (y, z) = 1, 2: generates an runtime error because 2 cannot be matched with (y, z);

� x [0], x [1] = x [1], x [0]: swaps the first two elements of list x.

202

1 from stack import Stack, push, pop
2

3 teststack = Stack()
4 push(?teststack, 1)
5 push(?teststack, 2)
6 v = pop(?teststack)
7 assert v == 2
8 push(?teststack, 3)
9 v = pop(?teststack)

10 assert v == 3
11 v = pop(?teststack)
12 assert v == 1

Figure A.2: [code/stacktest.hny] Testing a stack implementation.

As in Python, pattern matching can also be used in for statements. For example:

for key, value in [(1, 2), (3, 4)]: ...

Harmony (but not Python) also allows pattern matching in defining and invoking methods. For
example, you can write:

def f[a, (b, c)]: ...

and then call f[1, (2, 3)]. Note that the more familiar: def g(a) defines a method g with a single
argument a. Invoking g(1, 2) would assign the tuple (1, 2) to a. This is not consistent with Python
syntax. For single argument methods, you may want to declare as follows: def g(a,). Calling g(1,)
assigns 1 to a, while calling g(1, 2) would result in a runtime error as (1, 2) cannot be matched
with (a,).

Pattern matching can also be used in const, let, and when exists statements.

A.7 Dynamic Allocation

Harmony supports various options for dynamic allocation. By way of example, consider a stack.
Figure A.2 presents a test program for a stack. We present four different stack implementations to
illustrate options for dynamic allocation:

1. Figure A.3 uses a single list to represent the stack. push and pop operations update the list;

2. Figure A.4 also uses a list but, instead of updating the list, it replaces the list with a new one
for each operation;

3. Figure A.5 represents a stack as a recursively nested tuple (v, f), where v is the element on
top of the stack and r is a stack that is the remainder;

203

https://harmony.cs.cornell.edu/code/stacktest.hny

1 def Stack() returns stack:
2 stack = []
3

4 def push(st, v):
5 (!st)[len(!st)] = v
6

7 def pop(st) returns next :
8 let n = len(!st) – 1:
9 next = (!st)[n]

10 del (!st)[n]

Figure A.3: [code/stack1.hny] Stack implemented using a dynamically updated list.

1 import lists

2

3 def Stack() returns stack:
4 stack = []
5

6 def push(st, v):
7 !st += [v,]
8

9 def pop(st) returns next :
10 let n = len(!st) – 1:
11 next = (!st)[n]
12 !st = lists.subseq(!st, 0, n)

Figure A.4: [code/stack2.hny] Stack implemented using static lists.

1 def Stack() returns stack:
2 stack = ()
3

4 def push(st, v):
5 (!st) = (v, !st)
6

7 def pop(st) returns next :
8 let (top, rest) = !st :
9 next = top

10 !st = rest

Figure A.5: [code/stack3.hny] Stack implemented using a recursive tuple data structure.

204

https://harmony.cs.cornell.edu/code/stack1.hny
https://harmony.cs.cornell.edu/code/stack2.hny
https://harmony.cs.cornell.edu/code/stack3.hny

1 from alloc import malloc, free
2

3 def Stack() returns stack:
4 stack = None
5

6 def push(st, v):
7 !st = malloc({ .value: v, .rest : !st })
8

9 def pop(st) returns next :
10 let node = !st :
11 next = node→value
12 !st = node→rest
13 free(node)

Figure A.6: [code/stack4.hny] Stack implemented using a linked list.

4. Figure A.6 implements a stack as a linked list with nodes allocated using the alloc module.

While the last option is the most versatile (it allows cyclic data structures), Harmony does not
support garbage collection for memory allocated this way and so allocated memory that is no longer
in use must be explicitly released using free.

A.8 Comments

Harmony supports the same commenting conventions as Python. In particular, anything after a
character on a line is ignored. You can also enclose comments on separate lines within triple
quotes. In addition, Harmony supports nested multi-line comments of the form (* comment *).

A.9 Type Checking

Harmony is dynamically typed. You can add type annotations to your program in the form of
assertions and invariants. For example:

205

https://harmony.cs.cornell.edu/code/stack4.hny

1 invariant (type(x) == "int") and ((x % 2) == 0)
2 x = choose { 0, 2, 4, 6 }
3

4 def double(n) returns result :
5 assert type(n) == "int"
6 result = n * 2
7 assert type(result) == "int"
8

9 def main():
10 x = double(x)
11

12 spawn main()

The invariant in Line 1 states that x is an even integer. The assertion in Line 5 states that the
argument to function double is an integer. The assertion in Line 7 states that the return value of
the function is also an integer. Harmony checks these types as it evaluates the program.

206

Appendix B

Modules

Harmony modules provide convenient access to various data structures, algorithms, and synchro-
nization paradigms. They are all implemented in the Harmony language itself (so you can look at
their code) although some methods have also been implemented directly into the underlying model
checker for more efficient model checking.

Currently there are the following modules:

action Section B.1 support for action-based specifications
alloc Section B.2 dynamic memory allocation
bags Section B.3 multi-sets
hoare Section B.4 Hoare module interface
lists Section B.5 common operations on lists
sets Section B.6 common operations on sets
synch Section B.7 synchronization
thread Section B.8 fork/join interface to threads

B.1 The action module

The action module supports action-based specification. Such a specification consists of a explicit
global state and rules for how to make state transitions. Chapter 26 provides an example. The
module has only one method:

explore(x) explore the state space

Here x is a set of lambdas, each of which can return a set of thunks, each representing a possible
action (state change). The union of the results of the lambdas should generate all possible actions.
A thunk represents a method and its arguments that updates the state accordingly.

207

B.2 The alloc module

The alloc module supports thread-safe (but not interrupt-safe) dynamic allocation of shared mem-
ory locations. There are just two methods:

malloc(v) return a pointer to a memory location initialized to v
free(p) free an allocated memory location p

The usage is similar to malloc and free in C. malloc() is specified to return None when
running out of memory, although this is an impossible outcome in the current implementation of
the module.

B.3 The bags module

The bags module has various useful methods that operate on bags or multisets:

empty() returns an empty bag
fromSet(s) create a bag from set s
fromList(t) convert list t into a bag
multiplicity(b, e) count how many times e occurs in bag b
bchoose(b) like choose(s), but applied to a bag
add(b, e) add one copy of e to bag b
remove(b, e) remove one copy of e from bag b
combinations(b, k) return set of all subbags of size k

B.4 The hoare module

The hoare module implements support for Hoare-style monitors and condition variables.

Monitor() return a monitor mutex
enter(m) enter a monitor. m points to a monitor mutex
exit(m) exit a monitor
Condition() return a condition variable
wait(c, m) wait on condition variable pointed to by c in monitor pointed to by m

signal(c, m) signal a condition variable

B.5 The lists module

The lists module has various useful methods that operate on lists or tuples:

208

subseq(t, b, f) return a slice of list t starting at index b and ending just before f
append(t, e) returns t + [e,]
head(t) return the first element of list t
tail(t) return all but the first element of list t
index(t, e) return the index of element e in list t
startswith(t, s) returns whether s is a prefix of t
filter(f, t) returns a list of elements of t satisfying function f
map(f, t) returns a list of elements of t mapped by function f
permuted(t) returns a permutation of set t
list(t) convert a set into a list
values(t) convert values of a dict into a list sorted by key
items(t) convert dict into (key, value) list sorted by key
enumerate(t) like Python enumerate
qsort(t) returns a copy of t sorted using quicksort
foldl(t, f, z) left fold with f a binary method and z the initial value
foldr(t, f, z) right fold with f a binary method and z the initial value
reduce(f, t, z) same as foldl(t, f, z)

B.6 The sets module

The sets module implements the following methods:

add(s, e) returns s ∪ {e}
remove(s, e) returns s \ {e}
subsets(s) returns the set of subsets of s
union(s) returns the union of the elements of s
filter(f, s) returns a set of elements of s satisfying function f
map(f, s) returns a set of elements of s mapped by function f
cartesian(d) d is a list of sets. Returns the Cartesian product.
combinations(s, k) returns set of all subsets of size k
reduce(f, t, z) same as Python’s functools reduce()

B.7 The synch module

The synch module provides the following methods:

209

atomic load(p) atomically evaluate !p
atomic store(p, v) atomically assign !p = v
tas(lk) test-and-set on !lk
cas(ptr, old, new) compare-and-swap on !ptr
BinSema(v) return a binary semaphore initialized to v
Lock() return a binary semaphore initialized to False
acquire(bs) acquire binary semaphore !bs
release(bs) release binary semaphore !bs
Condition() return a condition variable
wait(c, lk) wait on condition variable !c and lock lk
notify(c) notify a thread waiting on condition variable !c
notify all(c) notify all threads waiting on condition variable !c
Semaphore(cnt) return a counting semaphore initialized to cnt
P(sema) procure !sema
V(sema) vacate !sema
Queue() return a synchronized queue object
get(q) return next element of q, blocking if empty
put(q, item) add item to a

B.8 The thread module

The thread module implements the fork/join interface to threads.

fork(thunk) spawn thunk and return a thread handle
join(handle) wait for the thread to finish and return its result

For example, the following code doubles each element of data in parallel and then sums the
result when done.

1 from thread import *
2

3 data = { 1, 2, 4 }
4

5 def main():
6 let double = lambda x : 2*x end
7 let map = { fork(?double(k)) for k in data }:
8 print sum(join(t) for t in map)
9

10 spawn main()

210

Appendix C

The Harmony Virtual Machine

The Harmony Virtual Machine (HVM, Chapter 4) has the following state:

code a list of HVM machine instructions
variables a dictionary mapping strings to values
ctxbag a bag of runnable contexts
stopbag a bag of stopped contexts
choosing if not None, indicates a context that is choosing

There is initially a single context with name init () and the program counter set to 0. The
thread starts executing in atomic mode until it finishes executing the last Return instruction. Other
threads, created through spawn statements, do not start executing until then.

A step is the execution of a single HVM machine instruction by a context. Each step generates
a new state. When there are multiple contexts, the HVM can interleave them. However, trying
to interleave every step would be needlessly expensive, as many steps involve changes to a context
that are invisible to other contexts.

A stride can involve multiple steps. The following instructions start a new stride: Load, Store,
AtomicInc, and Continue. The HVM interleaves stides, not steps. Like steps, each stride involves
a single context. Unlike a step, a stride can leave the state unchanged (because its steps lead back
to where the stride started).

Executing a Harmony program results in a graph where the nodes are Harmony states and the
edges are strides. When a state is choosing, the edges from that state are by a single context, one
for each choice. If not, the edges from the state are one per context.

Consecutive strides by the same thread are called a turn. Each state maintains the shortest
path to it from the initial state in terms of turns. The diameter of the graph is the length of the
longest path found in terms of turns.

If some states have a problem, the state with the shortest path is reported. Problematic states
include states that experienced exceptions. If there are no exceptions, Harmony computes the
strongly connected components (SCCs) of the graph (the number of such components are printed
as part of the output). The sink SCCs should each consist of a terminal state without any threads.
If not, again the state with the shortest path is reported.

211

If there are no problematic states, Harmony reports “no issues found” and outputs in the HTML
file the state with the longest path.

C.1 Machine Instructions

Apply m call method m

Assert, Assert2 pop b and check that it is True. Assert2 also pops value to print

AtomicInc/Dec increment/decrement the atomic counter of this context

Continue no-op (but causes a context switch)

Choose choose an element from the set on top of the stack

Cut retrieve an element from a iterable type

Del [v] delete shared variable v

DelVar [v] delete thread variable v

Dup duplicate the top element of the stack

Finally bca bca is the bytecode address of a lambda that returns a boolean

Frame m a start method m with arguments a, initializing variables

Go pop context and value, push value on context’s stack, and add to context bag

Invariant bca bca is the bytecode address of a lambda that takes arguments pre, post and returns a boolean

Jump p set program counter to p

JumpCond e p pop expression and, if equal to e, set program counter to p

Load [v] evaluate the address on the stack (or load shared variable v)

LoadVar v push the value of a thread variable onto the stack

Move i move stack element at offset i to top of the stack

n-ary op apply n-ary operator op to the top n elements on the stack

Pop pop a value of the stack and discard it

Print pop a value and add to the print history

Push c push constant c onto the stack

ReadonlyInc/Dec increment/decrement the read-only counter of this context

Return [v [, d]] pop return address, push v (or default value d), and restore program counter

Sequential pop an address of a variable that has sequential consistency

SetIntLevel pop e, set interrupt level to e, and push old interrupt level

Spawn [eternal] pop initial thread-local state, argument, and method and spawn a new context

Split pop tuple and push its elements

Stop [v] save context into shared variable v and remove from context bag

Store [v] pop a value from the stack and store it in a shared variable

StoreVar [v] pop a value from the stack and store it in a thread variable

Trap pop interrupt argument and method

212

Clarifications:

� Even though Harmony code does not allow taking addresses of thread variables, both shared
and thread variables can have addresses.

� The Load, Del, DelVar, and Stop instructions have an optional variable name: If omitted the
top of the stack must contain the address of the variable.

� The Store instruction has an optional variable name. The StoreVar instruction can even
have a nested tuple of variable names such as (a, (b, c)). In both cases the value to be assigned
is on the top of the stack. If the name is omitted, the address is underneath that value on
the stack.

� The Frame instruction pushes the value of the thread register (i.e., the values of the thread
variables) onto the stack. The Return instruction restores the thread register by popping its
value of the stack.

� All method calls have exactly one argument, although it sometimes appears otherwise:

– m() invokes method m with the empty dictionary () as argument;

– m(a) invokes method m with argument a;

– m(a, b, c) invokes method m with tuple (a, b, c) as argument.

The Frame instruction unpacks the argument to the method and places them into thread
variables by the given names.

� The Apply instruction is unnecessary as it can be implemented using 2-ary Closure and
Load. However, method calls are frequent enough to warrant a faster mechanism, reducing
model checking time.

� The Return instruction has an optional result variable and default value. If neither is specified,
the result value is on top of the stack. Otherwise it tries to read the local variable. If the
variable does not exist, the default value is used or an error is thrown.

� Every Stop instruction must immediately be followed by a Continue instruction.

� There are two versions of AtomicInc: lazy or eager. When eager, an atomic section immedi-
ately causes a switch point (switch between threads). When lazy, the state change does not
happen until the first Load, Store, or Print instruction. If there are no such instructions,
the atomic section may not even cause a switch point.

The n-Ary instruction can have many different operators as argument. Section A.1 describes
many of these operators, but some are used internally only. The current set of such operators are
as follows:

AddArg pop an argument and an address and push an address with the argument added
Closure pop an argument and a function and push an address with the single argument
DictAdd pop a value, a key, and a dictionary, and push an updated dictionary
ListAdd pop a value and a list, and push a new list with the given value added to the end
SetAdd pop a value and a set, and push a new set with the given value added

213

C.2 Addresses and Method Calls

Syntactically, Harmony does not make a distinction between methods calls and indexing in Harmony
dictionaries, lists, and strings. This is because Harmony makes all four look like functions that map
a value to another value. Beuses dynamic types, an expression like a b could mean that variable a
contains a bytecode address and a method call must be made with b as argument, or index b must
be looked up in the a value. Things can get more complicated for an expression like a b c, which
means ((a b) c): a b could return a bytecode address or an indexable Harmony value.

To deal with this, Harmony has a fairly unique address type. An address consists of a function
and a list of arguments, which we will denote here as 〈f, [a0, a1, ...]〉. If a is a shared variable, then
the address of a b c is 〈$, [“a”, b, c]〉, where $ is the function that maps the names of shared
variables to their values. In particular, $(“a”) is the value of variable a. A function can also be
a bytecode address or an indexable Harmony value. So, if a is instead a method (i.e., a bytecode
address constant), then the address would by 〈a, [b, c]〉. In the Harmony Virtual Machine, the $
function is represented as the bytecode address −1.

To evaluate the Harmony expression a b c, Harmony first generates its address (evaluating the
expression left to right). If a is a variable name, then the function in the address depends on
whether it is a shared variable or a thread variable. After the address is computed and pushed
onto the stack, the Load instruction evaluates the address, possibly in multiple steps in an iterative
manner.

A basic step of evaluating 〈function, arguments〉 proceeds as follows:

1. If arguments is empty, replace the address by function and proceed to the next instruction.

2. If function is an indexable Harmony value (list, string, or dictionary), arg is the first
argument, and remainder are the remaining arguments, then replace the address by
〈function[arg], remainder〉 and repeat.

3. If function is $, then replace the address by 〈$[arg], remainder〉 and repeat.

4. If function is a bytecode address, then push remainder, the value of the current program
counter (still pointing to the Load instruction), and arg onto the stack and set the program
counter to function. The Return instruction pushes 〈r, remainder〉, where r is the result of
the function, and restores the program counter so it executes the Load instruction again.

The Harmony Virtual Machine can sometimes to multiple of these basic steps in one big step.
For example, if a b c is a memory address, the Load instruction will finish in a single atomic step.
Both Load and Return are optimized in such ways.

C.3 Contexts and Threads

A context captures the state of a thread. Each time the thread executes an instruction, it goes from
one context to another. All instructions update the program counter (Jump instructions are not
allowed to jump to their own locations), and so no instruction leaves the context the same. There
may be multiple threads with the same state at the same time. A context consists of the following:

214

program counter contain an integer value pointing into the bytecode
atomic if non-zero, the thread is in atomic mode
readonly if non-zero, the thread is in read-only mode
stack a list of Harmony values
method variables a dictionary mapping strings (names of method variables) to values
thread-local variables a dictionary mapping strings (names of thread-local variables) to values
stopped a boolean indicating if the context is stopped
failure if not None, string that describes how the thread failed

Details:

� A thread terminates when it reaches the Return instruction of the top-level method (when
the stack frame is of type thread) or when it hits an exception. Exceptions include divide by
zero, reading a non-existent key in a dictionary, accessing a non-existent variable, as well as
when an assertion fails;

� The execution of a thread in atomic mode does not get interleaved with that of other threads.

� The execution of a thread in read-only mode is not allowed to update shared variables of
spawn threads.

� The register of a thread always contains a dictionary, mapping strings to arbitrary values.
The strings correspond to the variable names in a Harmony program.

C.4 Formal Specification

Most of the Harmony Virtual Machine is specified in TLA+. Given a Harmony program, you can
output the TLA+ specification for the program using the following command:

$ harmony -o program.tla program.hny

For most Harmony programs, including Peterson’s algorithm and the Dining Philosophers in
this book, the result is complete enough to run through the TLC model checker.

215

Appendix D

How Harmony Works

This appendix gives a very brief overview of how Harmony works. In a nutshell, Harmony goes
through the following four phases:

1. The Harmony compiler turns your Harmony program into bytecode. A recursive descent
parser and code generator written in Python (see harmony.py) turns an x.hny program into
x.hvm, a JSON file containing the corresponding bytecode.

2. The Harmony model checker evaluates the state space that the program (now in bytecode) can
generate. The model checker is written in C as it needs to be highly efficient (see charm.c).
The model checker starts from the initial state, and then, iteratively, checks for each state that
it has found what next steps are possible and generates the next states using the Harmony
virtual machine (Appendix C). If the model is finite, eventually the model checker will
generate a graph with all possible states, known as a Kripke structure. If there is a problematic
path in the Kripke structure (see below), then it will report the shortest such path in the
x.hco output file in JSON format.

3. The Kripke structure is interpreted as a nondeterministic epsilon automaton. Each step that
prints a value is labeled with that value, while each step that doesn’t is labeled with ε. In the
next phase, the ε-NFA is converted into a minimized DFA. This DFA is written to the x.hfa

output file.

4. The x.hco output file is translated twice by harmony.py. There is a so-called brief output
that is written to standard output. The rest depends on whether there was a problem with
the execution or not. If there was a problem, the more comprehensive output is placed in the
x.htm HTML output file, allowing you to navigate the problematic path and all the details
of each of the states on the path.

D.1 Compiler

The Harmony compiler, in order to stay true to the Harmony source program, does not do much
in the way of optimizations. The main optimizations that it does are:

216

� Constant folding: (simple) expressions consisting only of constants are evaluated by the com-
piler rather than by the model checker;

� Jump threading: Harmony eliminates jump to jump instructions;

� Dead variable elimination: Harmony removes method variables that are no longer in use from
the state in order to reduce the state space to be explored.

D.2 Model Checker

The Harmony model checker, called Charm, takes the output from the compiler and explores the
entire state space in breadth-first order. Even though Harmony does not really support input, there
are three sources of non-determinism that make this exploration non-trivial:

� choose expressions: Harmony’s ability to let the program choose a value from a set;

� thread interleaving : different threads run pseudo-concurrently with their instructions inter-
leaved in arbitrary ways;

� interrupts: Harmony programs can set interrupts that can go off at arbitrary times.

A thread can be in atomic mode or not. In atomic mode, the execution of the thread is not
interleaved with other threads. A thread can also be in read-only mode or not. In read-only mode,
the thread cannot write or deleted shared variables.

Charm has some tricks to significantly reduce the state space to explore.

� A thread can have local state (program counter, stack, method variables, and thread-local
state variables). That state is called the context of the thread. The context of a thread cannot
be accessed by other threads, nor by invariant or finally statements. So, the model checker
only interleaves threads at Load, Store, and Del instructions where a thread interacts with
global variables.

� Threads are anonymous, and therefore two or more threads can have the same context. The
state of the model checker therefore maintains a bag (multiset) of contexts rather are than a
set of contexts. Thus even if there are hundreds of threads, there may be only tens of possible
context states.

That said, state space explosion is still a possibility, and Harmony programmers should keep
this in mind when writing and testing their programs. Do not be too ambitious: Start with small
tests and gradually build them up as necessary.

The model checker stops either when it finds a failing execution or when it has explored the
entire state space, whichever comes first. An execution can fail for a variety of reasons:

� An invariant failing: Harmony evaluates all invariants in all states that if finds—if one fails,
Harmony stops further exploration;

� An assertion failing;

� A behavior violation: This is when the sequence of printed values are not recognized by the
provided DFA (using the -B flag);

217

� A silly error: This includes reading variables that have not been assigned, trying to add a set
to an integer, taking the length of something that is not a set of a dictionary, and so on;

� An infinite loop: A thread goes into an infinite loop without accessing shared variables.

D.3 Automata Conversion

The output of the model checker is a graph (a so-called Kripke structure) that is typically very
large. If there are no failed transitions, Harmony generates a DFA of the print behavior. Starting
with the original Kripke structure, the edges are inspected. This graph of nodes (states) and edges
(transitions) forms a Non-deterministic Finite Automaton (NFA) with ε-transitions (transitions
without print operations). Harmony turns the NFA into a DFA and minimizes the DFA (although
not strictly necxessary). The DFA can be fed into another run of the model checker to check that
its print operations are consistent with the provided DFA.

D.4 Model Checker Output Analysis

If some execution failed, then Harmony will simply report the path of that failing execution. But
otherwise there may be the following outcomes:

� No issues: No failing executions and each program can terminate;

� Non-terminating states: Some executions lead to some form of deadlock or other issue that
causes some (non-eternal) threads not to be able to terminate;

� Race conditions: There are executions in which two threads access the same shared state
variable, with at least one of those accesses being a Store operation;

� Busy waiting: Executions in which threads are actively waiting for some condition, usually
by releasing and reacquiring locks.

In order to diagnose these outcomes, Harmony must analyze the graph.
The first thing that Harmony does is to locate non-terminating states, if any. To do this,

Harmony first determines the strongly connected components of the graph using Tarjan’s algorithm.
A component (subgraph) of a graph is strongly connected if each vertex (state) in the component
can be reached from each other vertex. The components then form a Directed Acyclic Graph
(DAG). The DAG is easier to analyze than the original graph. One can easily determine the sink
components (the components with no outgoing edges). If such a component has non-eternal threads
in it, then each state in that component is a non-terminating state.

To find race conditions, the model checker looks in the graph for states in which there are
multiple threads that can make a step. If there is a step in which multiple threads access the same
shared variable, at least one of those accesses is a store operation, and at least one of those threads
is not in atomic mode, then Harmony reports the shortest path to such a state.

To show how Harmony detects busy waiting, we will first show how Harmony determines if a
thread is blocked or not. A thread is considered blocked if it cannot terminate without the help
of another thread. For example, a thread waiting for a lock is blocked and cannot terminate until
another thread releases the lock. Determining whether a thread is blocked in a particular state can

218

be done within the confines of the connected component: The analyzer tries all possible executions
of the thread. If it cannot “escape” the connected component by doing so, it is considered blocked.
A thread is considered busy waiting if it is blocked, but it is also changing the shared state while
doing so. A thread that is waiting on a spinlock only observes the state.

In the output, each thread has a unique identifier: T0 is the initialization thread; Tn is the
nth spawned thread that executes. This seems to contradict the fact that Harmony threads are
anonymous. The output analyzer assigns these identifiers a posteriori to the threads in the state
graph by keeping track, along the reported execution path, what state each thread is in. So,
by examining the initial context of the thread that is running from some particular state, it can
determine if that context corresponds to the current context of some thread that ran previously or
if the context belongs to a new thread that has not run before.

219

Appendix E

Simplified Grammar

The next pages show a compact version of the complete Harmony grammar. The simplified grammar
ignores indentation rules.

220

1 block : statement [[NEWLINE | ';'] statement]*;
2

3 statement
4 : e # usually a function call
5 | e '=' [e '=']* e # assignment
6 | e aug assign e # augmented assignment
7 | assert e [',' e]
8 | atomically statement
9 | atomically ':' block

10 | await e
11 | const bv '=' e
12 | def bv [returns id]? ':' block
13 | del e [',' e]*
14 | finally e
15 | from id import id [',' id]*
16 | global id [',' id]*
17 | go e e
18 | if e ':' block [elif e ':' block]* [else ':' block]?
19 | import id [',' id]*
20 | invariant e
21 | pass
22 | print e
23 | sequential id [',' id]*
24 | spawn e
25 | trap e
26 | var bv '=' e
27 | while e ':' block
28 | letwhen ':' block # let/when statement
29 | comprehension ':' block # for statement
30 ;
31

32 comprehension: for clause [for clause | where clause]*;
33 letwhen: [let clause | when clause]+;
34 for clause: for bv in e;
35 where clause: where e;
36 let clause: let bv '=' e;
37 when clause: when e | when exists bv in e;
38

39 aug assign
40 : '+=' | '–=' | '*=' | '**=' | '/=' | '//=' | '%=' | 'mod='

41 | '>>=' | '<<= | 'and=' | 'or=' | '=>=' | '&=' | '|=' | 'ˆ='

42 ;

221

1 e # expression
2 : False | True | None | '{:}'
3 | [0–9]+ | 0x[0–9a–fA–F]+ | 0b[0–1]+ | 0o[0–7]+ # integer
4 | "..." | '...' | """...""" | ' ' '...' ' ' | '.' id # string forms
5 | id
6 | unary e
7 | e binary e
8 | e e # application
9 | [e,]* e? # tuple/list

10 | '{' [e,]* e? '}' # set
11 | '{' [e ':' e,]* [e ':' e] '}' # dictionary
12 | '{' e '..' e '}' # range
13 | e comprehension # list comprehension
14 | '{' e comprehension '}' # set comprehension
15 | '{' e ':' e comprehension '}' # dict comprehension
16 | '(' e? ')'
17 | '[' e? ']'
18 | e if e else e
19 | lambda bv : e end
20 | save e
21 | stop id
22 ;
23

24 unary
25 : '–' | '?' | '!' | '˜' | abs | all | any | bin | choose | dict
26 | hex | int | keys | len | list | max | min | not | oct
27 | reversed | set | sorted | str | sum | type | zip
28 ;
29

30 binary
31 : '+' | '–' | '*' | '/' | '//' | '%' | mod | '**' | '|' | '&' | 'ˆ'
32 | '<<' | '>>' | '==' | '!=' | '<' | '<=' | '>' | '>=' | not? in
33 | or | and | '=>'

34 ;
35

36 bv # bounded variable(s)
37 : id
38 | [bv ',']+ bv
39 | '(' bv ')'
40 | '[' bv ']'
41 ;
42

43 id : [a–zA–Z][a–zA–Z0–9]*; # identifier

222

Appendix F

Directly checking linearizability

We want a concurrent queue to behave consistently with a sequential queue in that all put
and get operations should appear to happen in a total order. Moreover, we want to make sure
that if some put or get operation o1 finished before another operation o2 started, then o1 should
appear to happen before o2 in the total order. If these two conditions are met, then we say that
the concurrent queue implementation is linearizable.

In general, if a data structure is protected by a single lock and every operation on that data
structure starts with acquiring the lock and ends with releasing the lock, it will automatically be
linearizable. The queue implementation in Figure 9.3 does not quite match this pattern, as the
put operation allocates a new node before acquiring the lock. However, in this case that is not a
problem, as the new node has no dependencies on the queue when it is allocated.

Still, it would be useful to check in Harmony that Figure 9.3 is linearizable. To do this, instead
of applying the operations sequentially, we want the test program to invoke the operations con-
currently, consider all possible interleavings, and see if the result is consistent with an appropriate
sequential execution of the operations.

Harmony provides support for testing linearizability, but requires that the programmer identifies
what are known as linearization points in the implementation that indicate exactly which sequential
execution the concurrent execution must align with. Figure F.1 is a copy of Figure 9.3 extended
with linearization points. For each operation (get and put), the corresponding linearization point
must occur somewhere between acquiring and releasing the lock.

Each linearization point execution is assigned a logical timestamp. Logical timestamps are
numbered 0, 1, ... To do so, we have added a counter (time) to the Queue. Method linpoint

saves the current counter in this.qtime and increments the counter. The this dictionary maintains
thread-local state associated with the thread (Chapter 4)—it contains variables that can be accessed
by any method in the thread.

Given the linearization points, Figure F.2 shows how linearizability can be tested. The test pro-
gram is similar to the sequential test program (Figure 10.1) but starts a thread for each operation.
The operations are executed concurrently on the concurrent queue implementation of Figure F.1,
but they are executed sequentially on the sequential queue specification of Figure 9.1(a). To that
end, the test program maintains a global time variable qtime, and each thread waits until the times-
tamp assigned to the last concurrent queue operation matches qtime before invoking the sequential

223

1 from synch import Lock, acquire, release
2 from alloc import malloc, free
3

4 def Queue():
5 result = { .head : None, .tail : None, .lock : Lock(), .time: 0 }
6

7 def linpoint(q):
8 atomically:
9 this.qtime = q→time

10 q→time += 1
11

12 def put(q, v):
13 let node = malloc({ .value: v, .next : None }):
14 acquire(?q→lock)
15 if q→tail == None:
16 q→tail = q→head = node
17 else:
18 q→tail→next = node
19 q→tail = node
20 linpoint(q)
21 release(?q→lock)
22

23 def get(q):
24 acquire(?q→lock)
25 let node = q→head :
26 if node == None:
27 result = None
28 else:
29 result = node→value
30 q→head = node→next
31 if q→head == None:
32 q→tail = None
33 free(node)
34 linpoint(q)
35 release(?q→lock)

Figure F.1: [code/queuelin.hny] Queue implementation with linearization points

224

https://harmony.cs.cornell.edu/code/queuelin.hny

1 import queuelin, queuespec
2

3 const NOPS = 4
4 const VALUES = { 1..NOPS }
5

6 sequential qtime
7 qtime = 0
8

9 implq = queuelin.Queue()
10 specq = queuespec.Queue()
11

12 def thread():
13 let op = choose({ "get", "put" }):
14 if op == "put":
15 let v = choose(VALUES):
16 queuelin.put(?implq, v)
17 await qtime == this.qtime
18 queuespec.put(?specq, v)
19 else:
20 let v = queuelin.get(?implq):
21 await qtime == this.qtime
22 let w = queuespec.get(?specq):
23 assert v == w
24 atomically qtime += 1
25

26 for i in {1..NOPS}:
27 spawn thread()

Figure F.2: [code/qtestconc.hny] Concurrent queue test

225

https://harmony.cs.cornell.edu/code/qtestconc.hny

operation in the specification. Afterward, it atomically increments the shared qtime variable. This
results in the operations being executed sequentially against the sequential specification in the same
order of the linearization points of the concurrent specification.

226

Appendix G

Manual Pages

NAME

Harmony — the Harmony compiler and model checker

SYNOPSIS

harmony [options] filename

DESCRIPTION

harmony is a compiler and model checker for the Harmony programming language. harmony com-
piles Harmony into bytecode and then model checks the bytecode. The result is analyzed for
failing assertions and invariants, non-terminating conditions such as deadlock and infinite loops,
race conditions, deviations from specifications, and busy waiting. There are three phases:

� compile: parses Harmony source code and generates Harmony virtual machine code;

� model check : generates a graph of all reachable states from the Harmony virtual machine
code while checking for safety violations;

� analysis: checks the graph for non-termination, race conditions, and busy waiting.

The Harmony file name extensions are as follows:

� .hny: Harmony source code;

� .hvm: Harmony virtual machine code (in JSON format);

� .hco: Harmony output (in JSON format);

� .hvb: Harmony verbose output (human readable);

� .hfa: Harmony finite automaton, describing the possible print outputs (in JSON format).

227

In addition, harmony can also generate .tla (TLA+), .htm (HTML), .gv: (Graphviz DOT
version of .hfa output), .png: (PNG version of .hfa output), and .tex: (LaTeX formatted source
code).

By default, running “harmony x.hny’ will generate x.hvm, x.hco, x.hvb, x.png, and x.hvm

files. Harmony will also, by default, automatically start a web browser to display the x.hvm file.
Various options can be used to change the behavior.

When importing a module using import x, harmony will try to find the corresponding .hny file
in the following order:

1. check if the module file is specified with the -m or --module option;

2. see if a file by the name x.hny is present in the same directory as the source file;

3. see if a file by the name x.hny is present in the installation’s modules directory.

OPTIONS

Output file options:

� -o filename.gv : specify the name of the file where the graphviz (DOT) output should be
stored;

� -o filename.hco: specify the name of the file where model checker output should be stored;

� -o filename.hfa: specify the name of the file where the Harmony finite automaton should be
stored;

� -o filename.htm: specify the name of the file where the HTML output should be stored;

� -o filename.hvb: specify the name of the file where the verbose output should be stored;

� -o filename.hvm: specify the name of the file where the Harmony virtual machine code should
be stored;

� -o filename.png : specify the name of the file where the PNG output should be stored;

� -o filename.tla: generate a TLA+ file specifying the behaviors of the Harmony virtual machine
code;

� -o filename.tex : generate a LaTeX+ file containing the formatted source code.

Other options:

� -a: compile only and list machine code (with labels);

� -A: compile only and list machine code (without labels);

� -B filename.hfa: check Harmony code against output behaviors described in filename.hfa

(result of another Harmony run);

228

� -c, --const constant=expression: set the value of the given constant (which must be defined
in the code) to the result of evaluating the given expression;

� -m, --module module=filename.hny : load the given module instead of looking in default
locations;

� --noweb: do not start a web browser upon completion;

� -v, --version: print the harmony version number.

� -w #workers: specify the number of concurrent threads the model checker uses.

229

Appendix H

Peterson’s Algorithm

In 1981, Gary L. Peterson came up with a beautiful solution to the mutual exclusion problem,
now known as “Peterson’s Algorithm” [Pet81]. Figure 5.6 presents the algorithm. Why does it
work? We will focus here on how one might go about proving mutual exclusion for an algorithm
such as Peterson’s. It turns out that doing so is not trivial. You have to understand a little bit
about how the Harmony virtual machine (HVM) works. In Chapter 4 we talked about the concept
of state: at any point in time the HVM is in a specific state. A state is comprised of the values of the
shared variables as well as the values of the thread variables of each thread, including its program
counter and the contents of its stack. Each time a thread executes a HVM machine instruction,
the state changes (if only because the program counter of the thread changes). We call that a step.
Steps in Harmony are atomic.

The HVM starts in an initial state in which there is only one thread (init ()) and its program
counter is 0. A trace is a sequence of steps starting from the initial state, resulting in a sequence of
states. When making a step, there are two sources of non-determinism in Harmony. One is when
there is more than one thread that can make a step. The other is when a thread executes a choose
operation and there is more than one choice. Because there is non-determinism, there are multiple
possible traces. We call a state reachable if it is either the initial state or it can be reached from
the initial state through a finite trace. A state is final when there are no threads left to make state
changes.

It is often useful to classify states. Initial, final, and reachable, and unreachable are all examples
of classes of states. Figure H.1 depicts a Venn diagram of various classes of states and a trace. One
way to classify states is to define a predicate over states. All states in which x = 1, or all states
where there are two or more threads executing, are examples of such predicates. For our purposes,
it is useful to define a predicate that says that at most one thread is in the critical section. We
shall call such states exclusive.

An invariant of a program is a predicate that holds over all states that are reachable by that
program. We want to show that exclusivity is an invariant because mutual exclusion means that
all reachable states are exclusive. In other words, we want to show that the set of reachable states
of executing the program is a subset of the set of states where there is at most one thread in the
critical section.

230

Figure H.1: Venn diagram classifying all states and a trace

One way to prove that a predicate is an invariant is through induction on the number of steps.
First you prove that the predicate holds over the initial state. Then you prove that for every
reachable state, and for every step from that reachable state, the predicate also holds over the
resulting state. For this to work you would need a predicate that describes exactly which states are
reachable. But we do not have such a predicate: We know how to define the set of reachable states
inductively, but—given an arbitrary state—it is not easy to see whether it is reachable or not.

To solve this problem, we will use what is called an inductive invariant. An inductive invariant
I is a predicate over states that satisfies the following:

� I holds in the initial state.

� For any state in which I holds (including unreachable ones) and for any thread in the state,
if the thread takes a step, then I also holds in the resulting state.

One candidate for such a predicate is exclusivity itself. After all, it certainly holds over the
initial state. And as Harmony has already determined, exclusivity is an invariant: It holds over
every reachable state. Unfortunately, exclusivity is not an inductive invariant. To see why, consider
the following state s: let thread 0 be at label cs and thread 1 be at the start of the await statement.
Also, in state s, turn = 1. Now let thread 1 make a step. Because turn = 1, thread 1 will stop
waiting and also enter the critical section, entering a state that is not exclusive. So, exclusivity is
an invariant (holds over every reachable state, as demonstrated by Harmony), but not an inductive
invariant. It will turn out that s is not reachable.

We are looking for an inductive invariant that implies exclusivity. In other words, the set of
states where the inductive invariant holds must be a subset of the set of states where there is at
most one thread in the critical section.

Let us begin with considering the following important property: F(i) = thread(i)@[10 · · · 17]⇒
flags[i], that is, if thread i is executing in lines 10 through 17, then flags[i] is set. Although it does
not, by itself, imply exclusivity, we can show that F(i) is an inductive invariant (for both threads

231

0 and 1). To wit, it holds in the initial state, because in the initial state thread i does not even
exist yet. Now we have to show that if F(i) holds in some state, then F(i) also holds in a next
state. Since only thread i ever changes flags[i], we only need to consider steps by thread i. Since
F(i) holds, there are two cases to consider:

1. states in which flags[i] = true

2. states in which ¬thread(i)@[10 · · · 17] (because false implies anything)

In each case, we need to show that if thread i takes a step, then F(i) still holds. In the first case,
there is only one step that thread i can take that would set flags[i] to false: the step from line 17 to
line 18. But executing the line would also take the thread out of lines 10 · · · 17, so F(i) continues
to hold. In the second case (thread i is not executing in lines 10 · · · 17), the only step that would
cause thread i to execute in lines 10 · · · 17 would be the step in line 9. But in that case flags[i]
would end up being true, so F(i) continues to hold as well. So, F(i) is an inductive invariant (for
both threads 0 and 1).

While F(i) does not imply mutual exclusion, it does imply the following useful invariant:
thread(i)@cs⇒ flags[i]: when thread i is at the critical section, flags[i] is set. This seems obvious
from the code, but now you know how to prove it. We will use a similar technique to prove the
exclusivity is invariant.

We need a stronger inductive invariant than F(i) to prove mutual exclusion. What else do we
know when thread i is in the critical section? Let C(i) = ¬flags[1 − i] ∨ turn = i, that is, the
condition on the await statement for thread i. In a sequential program, C(i) would clearly hold if
thread i is in the critical section: thread(i)@cs⇒ C(i). However, because thread 1− i is executing
concurrently, this property does not hold. You can use Harmony to verify this. Just place the
following command in the critical section of the program:

assert (not flags[1 – self]) or (turn == self)

When running Harmony, this assertion will fail. You can check the HTML output to see what
happened. Suppose thread 0 is at the critical section, flags[0] = true, turn = 1, and thread 1 just
finished the step in line 7, setting flags[1] to true. Then C(0) is violated. But it suggests a new
property: G(i) = thread(i)@cs ⇒ C(i) ∨ thread(1 − i)@12. That is, if thread i is at the critical
section, then either C(i) holds or thread 1− i is about to execute line 12.
G(i) is an invariant for i = 0, 1. Moreover, if F(i) and G(i) both hold for i = 0, 1, then mutual

exclusion holds. We can show this using proof by contradiction. Suppose mutual exclusion is
violated and thus both threads are in the critical section. By F it must be the case that both
flags are true. By G and the fact that neither thread is about to execute Line 12, we know that
both C(0) and C(1) must hold. This then implies that turn = 0 ∧ turn = 1, providing the desired
contradiction.

We claim that G(i) is an inductive invariant. First, since neither thread in in the critical section
in the initial state, it is clear that G(i) holds in the initial state. Without loss of generality, suppose
i = 0 (a benefit from the fact that the algorithm is symmetric for both threads). We still have to
show that if we are in a state in which G(0) holds, then any step will result in a state in which G(0)
still holds.

First consider the case that thread 0 is at label cs. If thread 0 were to take a step, then in the
next state thread 0 would be no longer at that label and G(0) would hold trivially over the next
state. Therefore we only need to consider a step by thread 1.

232

From G we know that one of the following three cases must hold before thread 1 takes a step:

1. flags[1] = False;

2. turn = 0;

3. thread 1 is about to execute Line 12.

Let us consider each of these cases. We have to show that if thread 1 takes a step, then one
of those cases must hold after the step. In the first case, if thread 1 takes a step, there are two
possibilities: Either flags[1] will still be False (in which case the first case continues to hold), or
flags[1] will be True and thread 1 will be about to execute Line 12 (in which case the third case
will hold). We know that thread 1 never sets turn to 1, so if the second case holds before the step,
it will also hold after the step. Finally, if thread 1 is about to execute Line 12 before the step, then
after the step turn will equal 0, and therefore the second case will hold after the step.

Now consider the case where thread 0 is not in the critical section, and therefore G(0) holds
trivially because false implies anything. There are three cases to consider:

1. Thread 1 takes a step. But then thread 0 is still not in the critical section and G(0) continues
to hold;

2. Thread 0 takes a step but still is not in the critical section. Then again G(0) continues to
hold.

3. Thread 0 takes a step and ends up in the critical section. Because thread 0 entered the critical
section, we know that flags}[1] = False or turn = 0 because of the await condition. And
hence G(0) continues to hold in that case as well.

We have now demonstrated mutual exclusion in Peterson’s Algorithm in two different ways: one
by letting Harmony explore all possible executions, the other using inductive invariants and proof
by induction. The former is certainly easier, but it does not provide intuition for why the algorithm
works. The second provides much more insight.

Even though they are not strictly necessary, we encourage you to include invariants in your
Harmony code. They can provide important insights into why the code works.

A cool anecdote is the following. When the author of Harmony had to teach Peterson’s Al-
gorithm, he refreshed his memory by looking at the Wikipedia page. The page claimed that the
following predicate is invariant: If thread i is in the critical section, then C(i) (i.e., G without the
disjunct that thread 1− i is about to execute Line 12. We already saw that this is not an invariant.
(The author fixed the Wikipedia page with the help of Fred B. Schneider.)

This anecdote suggests the following. If you need to do a proof by induction of an algorithm,
you have to come up with an inductive invariant. Before trying to prove the algorithm, you can
check that the predicate is at least invariant by testing it using Harmony. Doing so could potentially
avoid wasting your time on a proof that will not work because the predicate is not invariant, and
therefore not an inductive invariant either. Moreover, analyzing the counterexample provided by
Harmony may well suggest how to fix the predicate.

Exercises

H.1 Can you find one or more inductive invariants for the algorithm in Figure 5.7 to prove it
correct? Here’s a pseudo-code version of the algorithm to help you. Each line is an atomic action:

233

initially: flagX = flagY = False

thread X: thread Y:

X0: flagX = True Y0: flagY = True

X1: if not flagY goto X4 Y1: if not flagX goto Y4

X2: flagX = False Y2: flagY = False

X3: goto X0 Y3: goto Y0

X4: ...critical section... Y4: ...critical section...

X5: flagX = False Y5: flagY = False

234

Appendix I

Split Binary Semaphores

The Split Binary Semaphore (SBS) approach is a general technique for implementing conditional
waiting. SBS was originally proposed by Tony Hoare and popularized by Edsger Dijkstra [Dij79]. A
binary semaphore is a generalization of a lock. While a lock is always initialized in the released state,
a binary semaphore—if so desired—can be initialized in the acquired state. SBS is an extension
of a critical section that is protected by a lock. If there are n waiting conditions, then SBS uses
n+ 1 binary semaphores to protect the critical section. An ordinary critical section has no waiting
conditions and therefore uses just one binary semaphore (because n = 0). But, for example, a
bounded buffer has two waiting conditions:

1. consumers waiting for the buffer to be non-empty;

2. producers waiting for an empty slot in the buffer.

So, it will require 3 binary semaphores if the SBS technique is applied.
Think of each of these binary semaphores as a gate that a thread must go through in order to

enter the critical section. A gate is either open or closed. Initially, exactly one gate, the main gate,
is open. Each of the other gates, the waiting gates, is associated with a waiting condition. When a
gate is open, one thread can enter the critical section, closing the gate behind it.

When leaving the critical section, the thread must open exactly one of the gates, but it does not
have to be the gate that it used to enter the critical section. In particular, when a thread leaves
the critical section, it should check for each waiting gate if its waiting condition holds and if there
are threads trying to get through the gate. If there is such a gate, then it must select one and open
that gate. If there is no such gate, then it must open the main gate.

Finally, if a thread is executing in the critical section and needs to wait for a particular condition,
then it leaves the critical section and waits for the gate associated with that condition to open.

The following invariants hold:

� At any time, at most one gate is open;

� If some gate is open, then no thread is in the critical section. Equivalently, if some thread is
in the critical section, then all gates are closed;

� At any time, at most one thread is in the critical section.

235

1 from synch import BinSema, acquire, release
2

3 def RWlock() returns lock:
4 lock = {
5 .nreaders: 0, .nwriters: 0, .mutex : BinSema(False),
6 .r gate: { .sema: BinSema(True), .count : 0 },
7 .w gate: { .sema: BinSema(True), .count : 0 }
8 }
9

10 def release one(rw):
11 if (rw→nwriters == 0) and (rw→r gate.count > 0):
12 release(?rw→r gate.sema)
13 elif (rw→nreaders + rw→nwriters == 0) and (rw→w gate.count > 0):
14 release(?rw→w gate.sema)
15 else:
16 release(?rw→mutex)
17

18 def read acquire(rw):
19 acquire(?rw→mutex)
20 if rw→nwriters > 0:
21 rw→r gate.count += 1; release one(rw)
22 acquire(?rw→r gate.sema); rw→r gate.count –= 1
23 rw→nreaders += 1
24 release one(rw)
25

26 def read release(rw):
27 acquire(?rw→mutex); rw→nreaders –= 1; release one(rw)
28

29 def write acquire(rw):
30 acquire(?rw→mutex)
31 if rw→nreaders > 0 or rw→nwriters > 0:
32 rw→w gate.count += 1; release one(rw)
33 acquire(?rw→w gate.sema); rw→w gate.count –= 1
34 rw→nwriters += 1
35 release one(rw)
36

37 def write release(rw):
38 acquire(?rw→mutex); rw→nwriters –= 1; release one(rw)

Figure I.1: [code/rwlock sbs.hny] Reader/Writer Lock using Split Binary Semaphores

236

https://harmony.cs.cornell.edu/code/rwlock_sbs.hny

The main gate is implemented by a binary semaphore, initialized in the released state (signifying
that the gate is open). The waiting gates each consist of a pair: a counter that counts how
many threads are waiting behind the gate and a binary semaphore initialized in the acquired state
(signifying that the gate is closed).

We will illustrate the technique using the reader/writer problem. Figure I.1 shows code. The
first step is to enumerate all waiting conditions. In the case of the reader/writer problem, there are
two: a thread that wants to read may have to wait for a writer to leave the critical section, while a
thread that wants to write may have to wait until all readers have left the critical section or until
a writer has left.

The state of a reader/writer lock thus consists of the following:

� nreaders: the number of readers in the critical section;

� nwriters: the number of writers in the critical section (0 or 1);

� mutex : the main gate binary semaphore;

� r gate: the waiting gate used by readers, consisting of a binary semaphore and the number
of readers waiting to enter;

� w gate: the waiting gate used by writers, similar to the readers’ gate.

Each of the read acquire, read release, write acquire, and write release methods must
maintain this state. First they have to acquire the mutex (i.e., enter the main gate). After acquiring
the mutex, read acquire and write acquire each must check to see if the thread has to wait.
If so, it increments the count associated with its respective gate, opens a gate (using method
release one), and then blocks until its waiting gate opens up.

release one() is the function that a thread uses when leaving the critical section. It must
check to see if there is a waiting gate that has threads waiting behind it and whose condition is
met. If so, it selects one and opens that gate. In the given code, release one() first checks the
readers’ gate and then the writers’ gate, but the other way around works as well. If neither waiting
gate qualifies, then release one() has to open the main gate (i.e., release mutex).

Let us examine read acquire more carefully. First, the method acquires mutex. Then, in the
case that the thread finds that there is a writer in the critical section (nwriters > 0), it increments
the counter associated with the readers’ gate, leaves the critical section (release one), and then
tries to acquire the binary semaphore associated with the waiting gate. This causes the thread to
block until some other thread opens that gate.

Now consider the case where there is a writer in the critical section and there are two readers
waiting. Let us see what happens when the writer calls write release:

1. After acquiring mutex, the writer decrements nwriters, which must be 1 at this time, and thus
becomes 0.

2. The writer then calls release one(). release one() finds that there are no writers in the
critical section and there are two readers waiting. The writer therefore releases not mutex
but the readers’ gate’s binary semaphore.

3. One of the waiting readers can now re-enter the critical section. When it does, the reader
decrements the gate’s counter (from 2 to 1) and increments nreaders (from 0 to 1). The reader
finally calls release one().

237

1 import synch

2

3 def Monitor() returns monitor :
4 monitor = synch.Lock()
5

6 def enter(mon):
7 synch.acquire(mon)
8

9 def exit(mon):
10 synch.release(mon)
11

12 def Condition() returns condition:
13 condition = { .sema: synch.BinSema(True), .count : 0 }
14

15 def wait(cond, mon):
16 cond→count += 1
17 exit(mon)
18 synch.acquire(?cond→sema)
19 cond→count –= 1
20

21 def signal(cond, mon):
22 if cond→count > 0:
23 synch.release(?cond→sema)
24 enter(mon)

Figure I.2: [modules/hoare.hny] Implementation of Hoare monitors

4. Again, release one() finds that there are no writers and that there are readers waiting, so
again it releases the readers’ semaphore.

5. The second reader can now enter the critical section. It decrements the gate’s count from 1
to 0 and increments nreaders from 1 to 2.

6. Finally, the second reader calls release one(). This time release one() does not find any
threads waiting, and so it releases mutex. There are now two reader threads that are holding
the reader/writer lock.

Tony Hoare, who came up with the concept of split binary semaphores, devised an abstraction
of the concept in a programming language paradigm called monitors [Hoa74]. (A similar construct
was independently invented by Per Brinch Hansen [BH73].) A monitor is a special version of an
object-oriented class, comprising a set of variables and methods that operate on those variables. A
monitor also has special variables called condition variables, one per waiting condition. There are
two operations on condition variables: wait and signal.

238

https://harmony.cs.cornell.edu/modules/hoare.hny

1 import hoare

2

3 def BoundedBuffer(size) returns buffer :
4 buffer = {
5 .mon: hoare.Monitor(),
6 .prod : hoare.Condition(), .cons: hoare.Condition(),
7 .buf : { x :() for x in {1..size} },
8 .head : 1, .tail : 1,
9 .count : 0, .size: size

10 }
11

12 def Queue() returns empty:
13 empty = BoundedBuffer(4)
14

15 def put(bb, item):
16 hoare.enter(?bb→mon)
17 if bb→count == bb→size:
18 hoare.wait(?bb→prod, ?bb→mon)
19 bb→buf [bb→tail] = item
20 bb→tail = (bb→tail % bb→size) + 1
21 bb→count += 1
22 hoare.signal(?bb→cons, ?bb→mon)
23 hoare.exit(?bb→mon)
24

25 def get(bb) returns next :
26 hoare.enter(?bb→mon)
27 if bb→count == 0:
28 hoare.wait(?bb→cons, ?bb→mon)
29 next = bb→buf [bb→head]
30 bb→head = (bb→head % bb→size) + 1
31 bb→count –= 1
32 hoare.signal(?bb→prod, ?bb→mon)
33 hoare.exit(?bb→mon)

Figure I.3: [code/boundedbuffer hoare.hny] Bounded Buffer implemented using a Hoare monitor

239

https://harmony.cs.cornell.edu/code/boundedbuffer_hoare.hny

Harmony does not have language support for monitors, but it has a module called hoare.
Figure I.2 shows its implementation. A Hoare monitor uses a hidden split binary semaphore. The
mutex semaphore is acquired when entering a monitor and released upon exit. Each condition
variable maintains a binary semaphore and a counter for the number of threads waiting on the
condition. Method wait increments the condition’s counter, releases the monitor mutex, blocks
while trying to acquire the condition’s semaphore, and upon resuming decrements the counter—in
much the same way as we have seen for SBS. Method signal checks to see if the condition’s count
is non-zero, if so releases the condition’s semaphore, and then blocks by trying to acquire the mutex
again.

Figure I.3 presents a bounded buffer implemented using Hoare monitors. It is written in much
the same way you would if using the SBS technique (see Exercise I.2). However, there is no
release one method. Instead, one can conclude that put guarantees that the queue will be non-
empty, and signal will check if there are any threads waiting for this event. If so, signal will
pass control to one such thread and, unlike release one, re-enter the critical section afterwards by
acquiring the mutex.

Implementing a reader/writer lock with Hoare monitors is not quite so straightforward, unfor-
tunately. When a writer releases the lock, it has to choose whether to signal a reader or another
writer. For that it needs to know if there is a reader or writer waiting. The simplest solution would
be to peek at the counters inside the respective condition variables, but that breaks the abstraction.
The alternative is for the reader/writer implementation to keep track of that state explicitly, which
complicates the code. Also, it requires a deep understanding of the SBS method to remember to
place a call to signal in the read acquire method that releases additional readers that may be
waiting to acquire the lock.

Exercises

I.1 Several of the calls to release one() in Figure I.1 can be replaced by simply releasing mutex.
Which ones?

I.2 Implement a solution to the producer/consumer problem using split binary semaphores.

I.3 Using busy waiting, implement a “bound lock” that allows up to M threads to acquire it at the
same time.1

A bound lock with M = 1 is an ordinary lock. You should define a constant M and two methods:
acquire bound lock() and release bound lock(). (Bound locks are useful for situations where
too many threads working at the same time might exhaust some resource such as a cache.)

I.4 Write a test program for your bound lock that checks that no more than M threads can acquire
the bound lock.

I.5 Write a test program for bound locks that checks that up to M threads can acquire the bound
lock at the same time.

I.6 With reader/writer locks, concurrency can be improved if a thread downgrades its write lock
to a read lock when its done writing but not done reading. Add a downgrade method to the code

1A bound lock is a restricted version of a counting semaphore.

240

in Figure I.1. (Similarly, you may want to try to implement an upgrade of a read lock to a write
lock. Why is this problematic?)

241

Acknowledgments

I received considerable help and inspiration from various people while writing this book.
First and foremost I would like to thank my student Haobin Ni with whom I’ve had numerous

discussions about the initial design of Harmony. Haobin even contributed some code to the Harmony
compiler. Many thanks are also due to William Ma who refactored the Harmony code to make it
easier to maintain. He also wrote the first version of the behavior automaton generator and created
the first graphs using the graphviz tool. I have had lots of discussions with him about a wide range
of improvements to the Harmony language, many of which came to fruition. I also want to thank
Ariel Kellison with whom I discussed approaches to formally specify the Harmony virtual machine
in TLA+.

Kevin Sun and Anthony Yang built a beautiful VSCode extension for Harmony called Harmony-
Lang and proceeded to build an animator for Harmony executions and two cloud-based Harmony
offerings, which you can learn about at http://harmony.cs.cornell.edu. They also developed much
of that web site and made valuable suggestions for improvements to the Harmony language. Later
they were joined by Shi Chong Zhao, Robin Li, and Seth Norman, all of whom made significant
contributions to Harmony.

I also would like to acknowledge my regular conversation about Harmony with Sasha Sandler of
the Oracle Cloud Infrastructure group. He is an early industrial adopter of Harmony and has used
it successfully to find and fix bugs in industrial settings. His insights have been invaluable.

Most of what I know about concurrent programming I learned from my colleague Fred Schneider.
He suggested I write this book after demonstrating Harmony to him. Being a foremost security
expert, he also assisted significantly with the chapter on the Needham-Schroeder protocol.

Leslie Lamport introduced me to using model checking to test properties of a concurrent system.
My experimentation with using TLC on Peterson’s Algorithm became an aha moment for me. I
have learned so much from his papers.

Tim Teitelbaum provided numerous suggestions for improving the text and formatting of the
book.

I first demonstrated Harmony to the students in my CS6480 class on systems and formal ver-
ification and received valuable feedback from them. The following people contributed by making
comments on or finding bugs in early drafts of the book: Alex Chang, Anneke van Renesse, Bren-
don Nguyen, CJ Lee, Harshul Sahni, Hartek Sabharwal, Heather Zheng, Jack Rehmann, Jacob
Brugh, Liam Arzola, Lorenzo Alvisi, Maria Martucci, Melissa Reifman, Nalu Concepcion, Phillip
O’Reggio, Saleh Hassen, Sunwook Kim, Terryn Jung, Trishita Tiwari, Xiangyu Zhang, Yidan Wang,
Zach Garcia, Zhuoyu Xu, and Zoltan Csaki.

Finally, I would like to thank my family who had to suffer as I obsessed over writing the code
and the book, at home, during the turbulent months of May and June 2020.

242

http://harmony.cs.cornell.edu

Index

acknowledgment, 142
acquire, 58
action, 160
actor model, 107
address, 28, 43
alloc module, 208
alternating bit protocol, 142
atomic instruction, 51
atomicity, 9

bag, 28
bags module, 208
barrier synchronization, 110
big lock, 66
blocked thread, 57
blocking queue, 107
Bohrbug, 9
bounded buffer, 87
broadcast, 91
busy waiting, 84
bytecode, 26

choose operator, 13
client/server model, 90
coarse-grained lock, 66
constant, 18
context, 27
continuation, 27
corner case, 10
critical region, 33
critical section, 33

data race, 51
deadlock, 101
deadlock avoidance, 104
determinism, 9, 154

dictionary, 26
dining philosopher, 101
directory, 28
distributed system, 142
dynamic allocation, 63

exception, 132

failure, 142
fairness, 97
fine-grained lock, 66
flow control, 90
formal verification, 10

go statement, 58

hand-over-hand locking, 66
Harmony method, 43
Harmony Virtual Machine, 26
Heisenbug, 9
hoare module, 208
HVM, 26

import statement, 45
inconsistent, 51
inductive invariant, 231
interleaving, 22
interrupt, 132
interrupt-safety, 132
invariant, 10, 230

Kripke structure, 218

lists module, 208
liveness property, 34
lock, 35, 51
lock granularity, 66

243

logical timestamp, 165, 223

machine instruction, 22
Mesa, 91
message passing, 107
model checking, 9
module, 45
monitor, 238
multiset, 28
mutual exclusion, 34

network, 142
non-blocking synchronization, 139
non-determinism, 230
notify, 91
notify all, 91

pattern matching, 202
Peterson’s Algorithm, 39, 230
pipeline, 87
pointer, 43
producer/consumer problem, 87
program counter, 27
progress, 34
property, 97
protocol, 142

race condition, 22
reachable state, 230
reader/writer lock, 84
register, 27
release, 58
replication, 154
reserve debugging, 82
retransmission, 142

safety property, 34
seqlock, 141
sequence number, 142
sequential, 9
sequential consistency, 28
sets module, 209
shared variable, 9
signal, 238
single point of failure, 164
spinlock, 51, 53
split binary semaphore, 235

stack machine, 28
starvation, 54, 97
state, 230
state machine replication, 154
step, 230
stop expression, 58
stride, 211
synch module, 51, 209
synchronized queue, 107

TAS, 53
test, 9
test-and-set, 53
thread, 9, 19, 34
thread module, 210
thread safety, 34
thread variable, 230
thread-local, 27
thunk, 160
Time Of Check Time Of Execution, 59
TOCTOE, 59
trace, 230

virtual machine, 26

wait, 91, 238
wait-free synchronization, 141

244

Glossary

actor model is a concurrency model where there are no shared variables, only threads with private
variables that communicate through message passing. 107

atomic instruction a machine instruction that may involve multiple memory load and/or store
operations and is executed atomically. 51

atomicity describes that a certain machine instruction or sequence of machine instructions is exe-
cuted indivisibly by a thread and cannot be interleaved with machine instructions of another
thread. 9

barrier synchronization is when a set of threads execute in rounds, waiting for one another to
complete each round. 110

behavior is a sequence of states. A trace uniquely defines a behavior but not vice versa. 70

blocked thread is a thread that cannot change the state or terminate or can only do so after
another thread changes the state first. For example, a thread that is waiting for a lock to
become available. 57

busy waiting (a.k.a. spin-waiting) is when a thread waits in a loop for some application-defined
condition instead of blocking. 84

concurrent execution (a.k.a. parallel execution) is when there are multiple threads executing
and their machine instructions are interleaved in an unpredictable manner. 9

condition variable a variable that keeps track of which threads are waiting for a specific
application-level condition. The variable can be waited on as well as signaled or notified.
91

conditional critical section is a critical section with, besides mutual exclusion, additional con-
ditions on when a thread is allowed to enter the critical section. 235

context (a.k.a. continuation) describes the state of a running thread, including the value of its
program counter, the values of its variables (stored in its register), and the contents of its
stack. 27

critical section (a.k.a. critical region) is a set of instructions that only one thread is allowed to
execute at a time. The instructions are, however, not executed atomically, as other threads
can continue to execute and access shared variables. 33

245

data race is when there are two or more threads concurrently accessing a shared variable, at least
one of which is an update to the variable. 51

deadlock is when there are two or more threads waiting indefinitely for one another to release a
resource. 101

determinism is when the outcome of an execution is uniquely determined by the initial state. 9

fairness is when each thread eventually can access each resource it needs to access with high
probability. 97

invariant is a binary predicate over states that must hold for every reachable state of a thread. 10

linearizable is a consistency condition for concurrent access to an object, requiring that each
access must appear to execute atomically sometime between the invocation of the access and
its completion. 223

lock an object that can be owned by at most one thread at a time. Useful for implementing mutual
exclusion. 35

machine instruction is an atomic operation on the Harmony virtual machine, executed by a
thread. 19

model checking is a formal verification method that explores all possible executions of a program,
which must have a finite number of states. 9

monitor is a programming language paradigm that supports mutual exclusion as well as waiting
for resources to become available. 238

mutual exclusion is the property that two threads never enter the same critical section. 34

non-blocking synchronization (a.k.a. wait-free synchronization) is when access to a shared
resource can be guaranteed in a bounded number of steps even if other threads are not
making progress. 139

producer/consumer problem is a synchronization problem whereby one or more producing
threads submit items and one or more consuming threads want to receive them. No item
can get lost or forged or be delivered to more than one consumer, and producers and con-
sumers should block if resources are exhausted. 87

property describes a set of execution traces or behaviors or histories that are allowed by a pro-
gram. Safety properties are properties in which !dblquote(no bad things happen,)! such
as violating mutual exclusion in a critical section. Liveness properties are properties where
!dblquote(something good eventually happens,)! like threads being able to enter the critical
section if they want to. 97

race condition describes when multiple threads access shared state concurrently, leading to un-
desirable outcomes. 23

246

reader/writer lock is a lock on a resource that can be held by multiple threads if they all only
read the resource. 84

replication maintains multiple copies of some resource to improve availability in the face of fail-
ures. 154

semaphore is a counter that can be atomically incremented and decremented, but blocks the
thread until the counter is larger than zero first. 235

sequential consistency is a consistency model in which shared memory accesses are executed in
an order consistent with the program order. 40

sequential execution is when there is just one thread executing, as opposed to concurrent exe-
cution. 9

shared variable is a variable that is stored in the memory of the Harmony virtual machine and
shared between multiple threads, as opposed to a thread variable. 9

spinlock is an implementation of a lock whereby a thread loops until the lock is available, at which
point the thread atomically obtains the lock. 51

stack machine is a model of computing where the state of a thread is kept on a stack. Harmony
uses a combination of a stack machine and a register-based machine. 28

starvation is when a thread cannot make progress because it is continuously losing a competition
with other threads to get access to a resource. 97

state an assignment of values to variables. In a Harmony virtual machine, this includes the contents
of its shared memory and the set of contexts. 230

state machine replication is a replication technique in which a collection of deterministic state
machines process the same inputs in the same order. 154

step is the execution of a machine instruction by a thread, updating its state. 230

thread is code in execution. We do not make the distinction between threads and threads. A
thread has a current context and updates its context every time it executes a machine in-
struction. 19

thread safety is when the implementation of a data structure allows concurrent access with well-
defined semantics. 33

thread variable is a variable that is private to a single thread and stored in its register. 230

trace is a sequence of steps, starting from an initial state. 230

247

	On Concurrent Programming
	Hello World!
	The Problems with Concurrent Programming
	The Harmony Virtual Machine
	Critical Sections
	Harmony Methods and Pointers
	Specifying a Lock
	Lock Implementations
	Concurrent Data Structures
	Testing: Checking Behaviors
	Debugging
	Conditional Waiting
	Reader/Writer Locks
	Bounded Buffer

	Condition Variables
	Starvation
	Deadlock
	Actors and Message Passing
	Barrier Synchronization
	Advanced Barrier Synchronization
	Example: A Concurrent File Service
	Interrupts
	Non-Blocking Synchronization
	Alternating Bit Protocol
	Leader Election
	Transactions and Two Phase Commit
	Chain Replication
	Working with Actions
	Replicated Atomic Read/Write Register
	Distributed Consensus
	Paxos
	Needham-Schroeder Authentication Protocol
	Bibliography
	Harmony Language Reference
	Value Types and Operators
	Statements
	Harmony is not object-oriented
	Constants, Global and Local Variables
	Operator Precedence
	Tuples, Lists, and Pattern Matching
	Dynamic Allocation
	Comments
	Type Checking

	Modules
	The action module
	The alloc module
	The bags module
	The hoare module
	The lists module
	The sets module
	The synch module
	The thread module

	The Harmony Virtual Machine
	Machine Instructions
	Addresses and Method Calls
	Contexts and Threads
	Formal Specification

	How Harmony Works
	Compiler
	Model Checker
	Automata Conversion
	Model Checker Output Analysis

	Simplified Grammar
	Directly checking linearizability
	Manual Pages
	Peterson's Algorithm
	Split Binary Semaphores
	Acknowledgments
	Index
	Glossary

